Universal R-matrix and graded Hopf algebra structure of ${ }^{U_{g}(\hat{g}(2 \mid 2))}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 314909
(http://iopscience.iop.org/0305-4470/31/21/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.122
The article was downloaded on 02/06/2010 at 06:53

Please note that terms and conditions apply.

Universal R-matrix and graded Hopf algebra structure of $U_{q}(\widehat{g l}(\mathbf{2} \mid \mathbf{2}))$

R M Gade
Institut für Physik, Universität Augsburg, Memminger Strasse 6, D-86135 Augsburg, Germany

Received 30 September 1997, in final form 23 February 1998

Abstract

An explicit formula for the universal R-matrix of $U_{q}(\widehat{g l}(2 \mid 2))$ is given using Drinfeld's basis. Its generators are chosen according to a non-standard set of positive simple roots. The expression implies an extension of the standard graded Hopf algebra $U_{q}(\widehat{s l}(2 \mid 2))$ defined in terms of its Chevalley generators to $U_{q}(\widehat{g l}(2 \mid 2))$. In addition to a four-dimensional vector representation, an infinite-dimensional representation of $U_{q}(g l(2 \mid 2))$ suitable for the description of a model related to the integer quantum Hall transition is considered.

1. Introduction

A number of models associated with affine superalgebras have attracted recent attention in context with two-dimensional disordered systems. Most investigations have focused on electronic systems in the presence of a random Abelian or non-Abelian vector field [1] which are accessible by analytic treatment due to an underlying structure encoded by the current superalgebra $\widehat{g l}(n \mid n)$. Before this, a detailed study of the Wess-Zumino-Witten model on the supergroup $G l(1 \mid 1)$ had been presented in [2]. Furthermore, Dirac fermions with a random mass have been discussed both in relation to the random bond Ising model [3] and several aspects of the integer quantum Hall transition [4]. For a Gaussian distributed mass, averaging over the disorder yields a Gross-Neveu model associated with $\operatorname{osp}(2 n \mid 2 n)$ which can be viewed as an integrable perturbation of the conformally invariant system characterized by the $\widehat{o s p}(2 n \mid 2 n)$-current superalgebra [5]. The corresponding formulation in terms of a massless scattering matrix was considered in [6].

A very recent study proposes the construction of an integrable vertex model based on a particular module of $g l(2 \mid 2)$ to the aim of describing the integer quantum Hall transition [7]. The appropriate affine algebra is expected to involve a graded Yangian structure related to $g l(2 \mid 2)$. Another approach consists in studying the corresponding vertex models related to the quantum affine superalgebra $U_{q}(\widehat{g l}(2 \mid 2))$ and to extract results for the $g l(2 \mid 2)$-invariant case from the limit $q \rightarrow-1$. This limiting procedure has been applied previously to obtain correlation functions for the $X X X$ spin chain from those of the $X X Z$ chain calculated by two different methods [8-10].

So far, studies of integrable vertex models associated with a Lie (super)algebra consider systems with statistical variables taking values in its finite-dimensional modules. In contrast, the description of disordered problems requires constructions taking into account infinitedimensional modules of $g l(n \mid n)$ or $\operatorname{osp}(2 n \mid 2 n)$ [7, 11].

Trigonometric solutions of the graded Yang-Baxter equation related to the vector representations of $\operatorname{sl}(n \mid m)$ and $\operatorname{osp}(2 n \mid m)$ were constructed in [12]. As emphasized
in [13], in the case $n=m$ the non-simple Lie superalgebra $g l(n \mid n)$ rather than $s l(n \mid n)$ has to be considered. The irreducible integrable highest-weight representations of affine quantum superalgebras have been classified [14]. The evaluation homomorphism established for $U_{q}(\widehat{s l}(n))$ [15] can be generalized to equip any $U_{q}(s l(n \mid m))$ module with a $U_{q}^{\prime}(\widehat{s l}(n \mid m))$ structure [16]. A method developed for non-critical systems invariant under an affine quantum algebra [8] provides expressions for the correlators in terms of vertex operators [17]. Their evaluation is achieved making use of a representation of the current algebra and its highest weight modules by means of deformed bosonic oscillators. An attempt to generalize this procedure to a $U_{q}(\widehat{s l}(2 \mid 1))$ model can be found in [18]. Because of their relevance to systems of interacting electrons in one spatial dimension, vertex models built from representations of $g l(2 \mid 1)$ or their q-deformations have been studied using Bethe ansatz in [19].

As the non-simple structure of $\operatorname{sl}(n \mid n)$ or $g l(n \mid n)$ gives rise to several particular features, the case $m=n$ is excluded in many studies of models related to $\operatorname{sl}(m \mid n)$.

In this paper, the graded Hopf algebra structure of $U_{q}(\widehat{g l}(2 \mid 2))$ is studied. $U_{q}(\widehat{s l}(2 \mid 2))$ does not admit a quasitriangular structure with respect to the standard definition of coproduct and antipode in terms of its Chevalley generators. A formulation of a quantum affine superalgebra by Drinfeld generators [20,21] adapted to the particular set of positive simple roots imposed by the intended physical applications [22] permits its extension to $U_{q}(\widehat{g l}(2 \mid 2))$. To define the graded Hopf algebra structure, coproduct and antipode need to be introduced for the additional generators. A suitable definition is supplied by the construction of the spectral-dependent universal R-matrix $\mathcal{R}(z)$ of $U_{q}(\widehat{g l}(2 \mid 2))$. An explicit expression is given for $\mathcal{R}(z)$ in terms of Drinfeld's generators. Formulae for the coproduct and antipode of the additional generators follow from a partial application of the universal R-matrix to a four-dimensional vector representation associated with the chosen set of simple roots. The implications of the non-simplicity relevant to the construction are discussed.

In view of the applications suggested in [7, 23], an infinite-dimensional module V of $U_{q}(g l(2 \mid 2))$ generated from an element characterized by one of the fundamental weights is considered. The model relevant to the description of an integer quantum Hall transition involves an R-matrix acting on the tensor product of the module V with its dual module V^{*}. In analogy with the case of a quantum affine algebra [17] the quasitriangular structure implies a crossing symmetry which relates this R-matrix to the R-matrix acting on a pair of modules V and thereby facilitates its computation considerably.

Generalization of the investigations to $U_{q}(\widehat{g l}(2 n \mid 2 n))$ is straightforward. A detailed description of the disordered systems related to $U_{q}(\widehat{g l}(2 \mid 2))$-vertex models will be published separately.

Section 2 reviews the definition of the graded Hopf algebra $U_{q}(g l(2 \mid 2))$. In section 3 the quantum affine superalgebra $U_{q}(\widehat{s l}(2 \mid 2))$ and its Hopf algebra structure are introduced in terms of Chevalley generators. Then using Drinfeld's basis $U_{q}(\widehat{g l}(2 \mid 2))$ is defined. Section 4 provides the universal R-matrix. Formulae for the coproduct and antipode completing the Hopf algebra structure of $U_{q}(\widehat{s l}(2 \mid 2))$ are derived in section 5. Section 6 deals with the infinite-dimensional $U_{q}(g l(2 \mid 2))$ modules.

2. The quantum affine superalgebra $U_{q}(\widehat{g l}(2 \mid 2))$

2.1. The Hopf algebra $U_{q}(g l(2 \mid 2))$

The quantum deformation $U_{q}(g l(2 \mid 2))$ of the universal enveloping superalgebra $U(g l(2 \mid 2))$
is defined as the associative \mathbb{Z}_{2}-graded algebra over the ring of formal power series $\mathbb{C}[[q-1]]$ generated by $\left\{e_{i}, f_{i}, h_{j}\right\}$ with $i=1,2,3$ and $j=1,2,3,4$ subject to the relations

$$
\begin{align*}
& {\left[h_{j}, h_{j^{\prime}}\right]=0} \\
& q^{h_{j}} e_{i} q^{-h_{j}}=q^{\bar{a}_{i j}} e_{i} \\
& q^{h_{j}} f_{i} q^{-h_{j}}=q^{-\bar{a}_{i j}} f_{i} \tag{1}\\
& {\left[e_{i}, f_{i^{\prime}}\right]=\delta_{i, i^{\prime}} \frac{q^{h_{i}}-q^{-h_{i}}}{q-q^{-1}}}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[e_{1}, e_{3}\right]=\left[f_{1}, f_{3}\right]=0} \\
& {\left[\left[e_{2}, e_{1}\right]_{q},\left[e_{2}, e_{3}\right]_{q}\right]=\left[\left[f_{2}, f_{1}\right]_{q^{-1}},\left[f_{2}, f_{3}\right]_{q^{-1}}\right]=0} \tag{2}
\end{align*}
$$

where [,] denotes the Lie superbracket $[x, y] \equiv x y-(-1)^{|x| \cdot|y|} y x$. All simple roots being chosen odd, the Z_{2}-grading $|\cdot|: U_{q}(g l(2 \mid 2)) \rightarrow Z_{2}$ assigns the value 1 to each generator e_{i}, f_{i} and the value 0 to $1, h_{j}$. The deformed supercommutators in (2) are defined by

$$
\begin{equation*}
\left[e_{i}, e_{i^{\prime}}\right]_{q} \equiv e_{i} e_{i^{\prime}}+q^{\bar{a}_{i^{\prime}}} e_{i^{\prime}} e_{i} \quad\left[f_{i}, f_{i^{\prime}}\right]_{q^{-1}} \equiv f_{i} f_{i^{\prime}}+q^{-\bar{a}_{i i^{\prime}}} f_{i^{\prime}} f_{i} \tag{3}
\end{equation*}
$$

In (1) $\bar{a}_{j j^{\prime}}=\left(\bar{\alpha}_{j}, \bar{\alpha}_{j^{\prime}}\right)$ denotes the symmetric bilinear form on the system of positive simple roots $\bar{\alpha}_{j}$:

$$
\bar{a}=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \tag{4}\\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

In terms of the basis $\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\}$ with the bilinear form $\left(\tau_{j}, \tau_{j^{\prime}}\right)=-(-1)^{j} \delta_{j, j^{\prime}}$ the simple roots $\bar{\alpha}_{j}$ and weights Λ_{j} read $\bar{\alpha}_{j}=-(-1)^{j}\left(\tau_{j}+\tau_{j+1}\right), j=1,2,3, \bar{\alpha}_{4}=\tau_{1}-\tau_{4}$ and $\Lambda_{j}=\sum_{j^{\prime}=1}^{j} \tau_{j^{\prime}}-\frac{1}{2} \sum_{j^{\prime}=1}^{4} \tau_{j^{\prime}}$. Over $\mathbb{C}[[q-1]]$ one can define the element

$$
\begin{equation*}
h=\log q=-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(q-1)^{n} \tag{5}
\end{equation*}
$$

In what follows the notation $q^{x \otimes y}=\exp (h x \otimes y)=\sum_{n=0}^{\infty} \frac{h^{n}}{n!}(x \otimes y)^{n}$ will also be used.
$U_{q}(g l(2 \mid 2))$ can be endowed with a graded Hopf algebra structure introducing the coproduct
$\Delta\left(e_{i}\right)=q^{h_{i}} \otimes e_{i}+e_{i} \otimes 1 \quad \Delta\left(f_{i}\right)=f_{i} \otimes q^{-h_{i}}+1 \otimes f_{i} \quad \Delta\left(q^{h_{j}}\right)=q^{h_{j}} \otimes q^{h_{j}}$
the antipode

$$
\begin{equation*}
S\left(e_{i}\right)=-q^{-h_{i}} e_{i} \quad S\left(f_{i}\right)=-f_{i} q^{h_{i}} \quad S\left(q^{h_{j}}\right)=q^{-h_{j}} \tag{7}
\end{equation*}
$$

and the counit

$$
\begin{equation*}
\epsilon\left(e_{i}\right)=\epsilon\left(f_{i}\right)=\epsilon\left(h_{j}\right)=0 \quad \epsilon(1)=1 \tag{8}
\end{equation*}
$$

The coproduct satisfies $\Delta(x y)=\Delta(x) \Delta(y)$ with the product operation of the graded Hopf algebra being defined by $(v \otimes w)(x \otimes y)=(-1)^{|w| \cdot|x|} v x \otimes w y$. The antipode S is a \mathbb{Z}_{2}-graded
algebra antiautomorphism $S(x y)=(-1)^{|x| \cdot|y|} S(y) S(x) . \quad U_{q}(g l(2 \mid 2))$ is a quasitriangular graded Hopf algebra with the universal R-matrix $R \in U_{q}(g l(2 \mid 2)) \hat{\otimes} U_{q}(g l(2 \mid 2))$ given by
$R=r q^{-\frac{1}{2} \sum_{j, j^{\prime}=1}^{4} \bar{a}_{j j^{\prime}}\left(h_{j} \otimes h_{j^{\prime}}\right)-\frac{1}{4} \lambda_{0}\left(h_{1}+h_{3}\right) \otimes\left(h_{1}+h_{3}\right)}$
$r=r_{1} r_{1,2} r_{1,2,3} r_{2} r_{2,3} r_{3}$
$r_{i}=\exp \left(\left(q-q^{-1}\right) e_{i} \otimes f_{i}\right)$
$r_{1,2}=\exp _{q^{2}}\left(\left(q-q^{-1}\right)\left[e_{2}, e_{1}\right]_{q} \otimes\left[f_{1}, f_{2}\right]_{q^{-1}}\right)$
$r_{2,3}=\exp _{q^{-2}}\left(-\left(q-q^{-1}\right)\left[e_{3}, e_{2}\right]_{q} \otimes\left[f_{2}, f_{3}\right]_{q^{-1}}\right)$
$r_{1,2,3}=\exp \left(-\left(q-q^{-1}\right)\left(e_{3}\left[e_{2}, e_{1}\right]_{q}-q^{-1}\left[e_{2}, e_{1}\right]_{q} e_{3}\right) \otimes\left(\left[f_{1}, f_{2}\right]_{q^{-1}} f_{3}-q f_{3}\left[f_{1}, f_{2}\right]_{q^{-1}}\right)\right)$
where the q -exponent is defined by

$$
\exp _{p} x \equiv \frac{\sum_{n=0}^{\infty} x^{n}}{(n)_{p}!}
$$

with

$$
(n)_{p}!=(1)_{p}(2)_{p} \cdots(n)_{p} \quad(l)_{p}=\frac{1-p^{l}}{1-p} \quad p=q^{ \pm 2}
$$

and $\hat{\otimes}$ denotes a tensor product completed over $\mathbb{C}[[q-1]]$. Because of the non-simple structure of $U_{q}(g l(2 \mid 2))$, the parameter λ_{0} is not determined.

Use of the algebraic properties of q-exponentials following [24] allows us to verify the quasitriangular structure of $U_{q}(g l(2 \mid 2))$:

$$
\begin{align*}
& \Delta^{\prime}(x) R=R \Delta(x) \quad \forall x \in U_{q}(g l(2 \mid 2)) \\
& (\Delta \otimes \mathrm{id}) R=R_{13} R_{23} \tag{10}\\
& (\mathrm{id} \otimes \Delta) R=R_{13} R_{12}
\end{align*}
$$

with $\Delta^{\prime}=\sigma \circ \Delta, \sigma(x \otimes y)=(-1)^{|x| \cdot|y|} y \otimes x$ and $R_{12}=R \otimes 1, R_{23}=1 \otimes R, R_{13}=$ ($\sigma \otimes \mathrm{id}$) R_{23}. Due to (10) R obeys the universal Yang-Baxter equation

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{11}
\end{equation*}
$$

A pair of representations $\pi_{W_{1}}, \pi_{W_{2}}$ of $U_{q}(g l(2 \mid 2))$ on the modules W_{1}, W_{2} yields a representation of R on $W_{1} \otimes W_{2}$. Given any three $U_{q}(g l(2 \mid 2))$ modules W_{1}, W_{2}, W_{3}, a solution of the Yang-Baxter equation

$$
\begin{equation*}
R_{12}^{W_{1} W_{2}} R_{13}^{W_{1} W_{3}} R_{23}^{W_{2} W_{3}}=R_{23}^{W_{2} W_{3}} R_{13}^{W_{1} W_{3}} R_{12}^{W_{1} W_{2}} \tag{12}
\end{equation*}
$$

is provided by $R^{W_{i} W_{j}}=\left(\pi_{W_{i}} \otimes \pi_{W_{j}}\right) R \in \operatorname{End}\left(W_{i} \otimes W_{j}\right) . R^{W_{i} W_{j}}$ depends on λ_{0} only through a constant $C^{i j}\left(\lambda_{0}\right)$. Excluding the generator h_{4} from $U_{q}(g l(2 \mid 2))$ yields the closed algebra $U_{q}(s l(2 \mid 2))$ which is not equipped with a universal R-matrix. The necessity of extending $U_{q}(s l(n \mid n))$ to $U_{q}(g l(n \mid n))$ in order to construct particular solutions of the corresponding Yang-Baxter equation has already been stressed in [13]. An element w_{k} of a given weight representation π_{W} on the module W is characterized by its weight $\Lambda=\sum_{j=1}^{4} m_{j}^{(k)} \Lambda_{j}$ where $\pi\left(h_{j}\right) w_{k}=m_{j}^{(k)} w_{k}$. Because of the non-simple structure of $g l(2 \mid 2)$, the component $m_{4}^{(k)}$ can be varied continuously by an amount independent of k throughout the module without affecting the action of the generators e_{i}, f_{i} and $h_{i}, i=1,2,3$. Then the R-matrix $R_{W W^{\prime}}$ changes only by a constant \mathbb{C}-valued factor as inspection of (9) confirms.
2.2. The quantum affine superalgebra $U_{q}(\widehat{g l}(2 \mid 2))$

Introducing an affine root δ with $(\delta, \delta)=\left(\delta, \tau_{i}\right)=0$ the quantum affine superalgebra $U_{q}^{\prime}(\widehat{s l}(2 \mid 2))$ can be defined based on the set of simple roots $\alpha_{0}=\delta-\bar{\alpha}_{1}-\bar{\alpha}_{2}-\bar{\alpha}_{3}, \alpha_{i}=$ $\bar{\alpha}_{i}, i=1,2,3$. The set of Chevalley generators $\left\{e_{i}, f_{i}, h_{i}\right\}, i=1,2,3$ is enlarged by e_{0}, f_{0}, h_{0} with the \mathbb{Z}_{2}-grading $\left|e_{0}\right|=\left|f_{0}\right|=1,\left|h_{0}\right|=0 . \quad U_{q}^{\prime}(\widehat{s l}(2 \mid 2))$ is then defined through the relations

$$
\begin{align*}
& {\left[h_{i}, h_{k}\right]=0 \quad q^{h_{i}} e_{k} q^{-h_{i}}=q^{\hat{a}_{i k}} e_{k} \quad q^{h_{i}} f_{k} q^{-h_{i}}=q^{-\hat{a}_{i k}} f_{k}} \\
& {\left[e_{i}, e_{k}\right]=\delta_{i, k} \frac{q^{h_{i}}-q^{-h_{i}}}{q-q^{-1}}} \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[e_{1}, e_{3}\right]=\left[e_{0}, e_{2}\right]=\left[f_{1}, f_{3}\right]=\left[f_{0}, f_{2}\right]=0} \tag{14}\\
& {\left[\left[e_{0}, e_{1}\right]_{q},\left[e_{0}, e_{3}\right]_{q}\right]=0 \quad\left[\left[f_{0}, f_{1}\right]_{q^{-1}},\left[f_{0}, f_{3}\right]_{q^{-1}}\right]=0} \\
& {\left[\left[e_{1}, e_{2}\right]_{q},\left[e_{1}, e_{0}\right]_{q}\right]=0 \quad\left[\left[f_{1}, f_{2}\right]_{q^{-1}},\left[f_{1}, f_{0}\right]_{q^{-1}}\right]=0} \tag{15}\\
& {\left[\left[e_{2}, e_{1}\right]_{q},\left[e_{2}, e_{3}\right]_{q}\right]=0 \quad\left[\left[f_{2}, f_{1}\right]_{q^{-1}},\left[f_{2}, f_{3}\right]_{q^{-1}}\right]=0} \\
& {\left[\left[e_{3}, e_{2}\right]_{q},\left[e_{3}, e_{0}\right]_{q}\right]=0 \quad\left[\left[f_{3}, f_{2}\right]_{q^{-1}},\left[f_{3}, f_{0}\right]_{q^{-1}}\right]=0 .}
\end{align*}
$$

Here the deformed supercommutators are defined as in (3) after replacing \bar{a} by

$$
\hat{a}=\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \tag{16}\\
-1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{array}\right)
$$

A coproduct and an antipode can be introduced using the expressions given in (6) and (7) for $i, j=0,1,2,3$. As in the non-affine case, $U_{q}^{\prime}(\widehat{s l}(2 \mid 2))$ has to be extended to $U_{q}^{\prime}(\widehat{g l}(2 \mid 2))$ to obtain a quasitriangular structure. This is achieved by formulating the algebra in terms of the Drinfeld basis [20]. Introduction of a grading operator yields the full quantum affine superalgebra $U_{q}(\widehat{g l}(2 \mid 2))$. It is defined as the unital associative \mathbb{Z}_{2}-graded algebra over $\mathbb{C}[[q-1]]$ generated by the Drinfeld generators $\left\{E_{n}^{i, \pm}, H_{n}^{j}, c\right\}$ with $n \in \mathbb{Z}, i=1,2,3$ and $j=1,2,3,4$ and the grading operator d subject to the relations

$$
\begin{align*}
& {[c, x]=0 \quad \forall x \in U_{q}(\widehat{g l}(2 \mid 2))} \\
& {\left[H_{n}^{j}, H_{n^{\prime}}^{j^{\prime}}\right]=\delta_{n+n^{\prime}, 0} \frac{q^{n a_{j j^{\prime}}}-q^{-n a_{j j^{\prime}}}}{n\left(q-q^{-1}\right)} \frac{\gamma^{n}-\gamma^{-n}}{q-q^{-1}}} \\
& q^{H_{0}^{j}} E_{n}^{i, \pm} q^{-H_{0}^{j}}=q^{ \pm a_{i j}} E_{n}^{i, \pm} \tag{17}\\
& {\left[H_{n}^{j}, E_{n^{\prime}}^{i, \pm}\right]= \pm \frac{q^{n a_{i j}}-q^{-n a_{i j}}}{n\left(q-q^{-1}\right)} E_{n+n^{\prime}}^{i, \pm} \gamma^{\mp \frac{n}{2}}} \\
& {\left[E_{n}^{i,+}, E_{n^{\prime}}^{i^{\prime},-}\right]=\delta_{i, i^{\prime}} \frac{1}{q-q^{-1}}\left(\gamma^{\frac{1}{2}\left(n-n^{\prime}\right)} \Psi_{n+n^{\prime}}^{i,+}-\gamma^{-\frac{1}{2}\left(n-n^{\prime}\right)} \Psi_{n+n^{\prime}}^{i,-}\right)}
\end{align*}
$$

with $\gamma=q^{c}$ and

$$
\begin{align*}
& \Psi^{j,+}(z) \equiv \sum_{n \geqslant 0} \Psi_{n}^{j,+} z^{-n}=q^{H_{0}^{j}} \exp \left(\left(q-q^{-1}\right) \sum_{n>0} H_{n}^{j} z^{-n}\right) \\
& \Psi^{j,-}(z) \equiv \sum_{n \geqslant 0} \Psi_{-n}^{j,-} z^{n}=q^{-H_{0}^{j}} \exp \left(-\left(q-q^{-1}\right) \sum_{n>0} H_{-n}^{j} z^{n}\right) \tag{18}
\end{align*}
$$

and
$\left[E_{n}^{i, \pm}, E_{n^{\prime}}^{i^{\prime}, \pm}\right]=0 \quad$ for $a_{i i^{\prime}}=0$
$E_{n+1}^{i, \pm} E_{n^{\prime}}^{i^{\prime}, \pm}+q^{ \pm a_{i i^{\prime}}} E_{n^{\prime}}^{i^{\prime}, \pm} E_{n+1}^{i, \pm}-E_{n^{\prime}+1}^{i^{\prime}, \pm} E_{n}^{i, \pm}-q^{ \pm a_{i i^{\prime}}} E_{n}^{i, \pm} E_{n^{\prime}+1}^{i^{\prime}, \pm}=0 \quad$ for $a_{i i^{\prime}} \neq 0$
$\left[\left[E_{n}^{2, \pm}, E_{n^{\prime}}^{1, \pm}\right]_{q^{ \pm 1}},\left[E_{k}^{2, \pm}, E_{k^{\prime}}^{3, \pm}\right]_{q^{ \pm 1}}\right]+\left[\left[E_{k}^{2, \pm}, E_{n^{\prime}}^{1, \pm}\right]_{q^{ \pm 1}},\left[E_{n}^{2, \pm}, E_{k^{\prime}}^{3, \pm}\right]_{q^{ \pm 1}}\right]=0$.
The grading operator d is defined by the commutators

$$
\begin{equation*}
\left[d, E_{n}^{i, \pm}\right]=n E_{n}^{i, \pm} \quad\left[d, H_{n}^{j}\right]=n H_{n}^{j} \quad[d, \gamma]=[d, d]=0 \tag{20}
\end{equation*}
$$

The \mathbb{Z}_{2}-grading $|\cdot|: U_{q}(\widehat{g l}(2 \mid 2)) \rightarrow \mathbb{Z}_{2}$ assigns 1 to $E_{n}^{i, \pm}$ and 0 to all remaining generators. In (17)-(19) the symmetric bilinear form $\left(\alpha_{j}, \alpha_{j^{\prime}}\right)=a_{j j^{\prime}}$ with $j, j^{\prime}=0,1,2,3,4$ is given by

$$
a=\left(\begin{array}{ccccc}
0 & -1 & 0 & 1 & -2 \tag{21}\\
-1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 & 0 \\
1 & 0 & -1 & 0 & 1 \\
-2 & 1 & 0 & 1 & 0
\end{array}\right)
$$

The deformed supercommutators are defined analogously to (3):

$$
\begin{equation*}
\left[E_{n}^{i, \pm}, E_{n^{\prime}}^{i^{\prime}, \pm}\right]_{\bar{q}}=E_{n}^{i, \pm} E_{n^{\prime}}^{i^{\prime}, \pm}+\bar{q}^{a_{i i^{\prime}}} E_{n^{\prime}}^{i^{\prime}, \pm} E_{n}^{i, \pm} \quad \bar{q}=q^{ \pm 1} \tag{22}
\end{equation*}
$$

The Chevalley generators of $U_{q}(\widehat{s l}(2 \mid 2))$ are related to the Drinfeld generators by the formulae

$$
\begin{align*}
& e_{i}=E_{0}^{i,+} \quad f_{i}=E_{0}^{i,-} \quad h_{i}=H_{0}^{i} \quad \text { for } i=1,2,3 \\
& q^{h_{0}}=\gamma q^{-h_{1}-h_{2}-h_{3}} \\
& e_{0}=\left[E_{0}^{3,-},\left[E_{0}^{2,-}, E_{1}^{1,-}\right]_{q}\right]_{q} q^{-h_{1}-h_{2}-h_{3}} \tag{23}\\
& f_{0}=q^{h_{1}+h_{2}+h_{3}}\left[\left[E_{-1}^{1,+}, E_{0}^{2,+}\right]_{q^{-1}}, E_{0}^{3,+}\right]_{q^{-1}}
\end{align*}
$$

where

$$
\begin{align*}
& {\left[E_{m}^{i, \pm},\left[E_{n}^{k, \pm}, E_{n^{\prime}}^{k^{\prime}, \pm}\right]_{q^{\prime}}\right]_{\bar{q}}=-\bar{q}^{a_{i k}+a_{i k^{\prime}}}\left[\left[E_{n}^{k, \pm}, E_{n^{\prime}}^{k^{\prime}, \pm}\right]_{q^{\prime}}, E_{m}^{i, \pm}\right]_{\bar{q}^{-1}} } \\
&=E_{m}^{i, \pm}\left[E_{n}^{k, \pm}, E_{n^{\prime}}^{k^{\prime} \pm}\right]_{q^{\prime}}-\bar{q}^{a_{i k}+a_{i k^{\prime}}}\left[E_{n}^{k, \pm}, E_{n^{\prime}}^{k^{\prime}, \pm}\right]_{q^{\prime}} E_{m}^{i, \pm} \quad q^{\prime}, \bar{q}= \pm 1 \tag{24}
\end{align*}
$$

This isomorphism allows us to evaluate coproduct and antipode of the Drinfeld generators $\left\{E_{n}^{i, \pm}, H_{n}^{i}, i=1,2,3\right\}$ from their definitions in terms of Chevalley generators. The coproducts of c and d are $\Delta(c)=c \otimes 1+1 \otimes c$ and $\Delta(d)=d \otimes 1+1 \otimes d$. In order to establish the standard graded Hopf algebra structure of $U_{q}(\widehat{g l}(2 \mid 2))$ the coproduct and antipode of H_{n}^{4} still need to be introduced suitably. Their definitions are implied by the construction of the
spectral dependent universal R-matrix for the quantum affine super algebra. The antipode relates the Drinfeld generators of $U_{q}(\widehat{s l}(2 \mid 2))$ to a second set of generators by

$$
\begin{align*}
& \hat{H}_{n}^{i}=-\gamma^{n} S\left(H_{n}^{i}\right) \quad S\left(\hat{H}_{n}^{i}\right)=-\gamma^{-n} H_{n}^{i} \\
& \hat{E}_{n}^{i, \pm}=-\gamma^{n} q^{ \pm h_{i}} S\left(E_{n}^{i, \pm}\right) \quad S\left(\hat{E}_{n}^{i, \pm}\right)=-\gamma^{-n} q^{\mp h_{i}} E_{n}^{i, \pm} \tag{25}
\end{align*}
$$

The defining relations of the set $\left\{\hat{E}_{n}^{i, \pm}, \hat{H}_{n}^{i}, c, d\right\}$ with $m \in \mathbb{Z}, n \in \mathbb{Z}-\{0\}$ as well as its relation to the Chevalley generators are obtained from (17)-(19) and (23) by the replacement $q \rightarrow q^{-1}$. Each set is extended to a realization of $U_{q}(\widehat{g l}(2 \mid 2))$ introducing the generators H_{n}^{4} and \hat{H}_{n}^{4}, respectively. The antipodes of the latter are defined as

$$
\begin{equation*}
S\left(H_{n}^{4}\right)=-\gamma^{-n} \hat{H}_{n}^{4} \quad S\left(\hat{H}_{n}^{4}\right)=-\gamma^{-n} H_{n}^{4} \tag{26}
\end{equation*}
$$

A different (graded) Hopf algebra structure originally due to Drinfeld [25, 26] shows a very simple coproduct in terms of the Drinfeld generators. Although not frequently used, this coproduct allows one to derive quantum parafermions for quantum affine algebras [27].

3. The universal R-matrix

To set up the quasitriangular structure for the affine case, define automorphisms D_{z} of $U_{q}(\widehat{g l}(2 \mid 2)) \otimes \mathbb{C}\left[z, z^{-1}\right]$ as

$$
\begin{equation*}
D_{z}\left(E_{n}^{i, \pm}\right)=z^{n} E_{n}^{i, \pm} \quad D_{z}\left(H_{n}^{j}\right)=z^{n} H_{n}^{j} \quad D_{z}(d)=d \tag{27}
\end{equation*}
$$

and maps

$$
\begin{equation*}
\Delta_{z}(x)=\left(D_{z} \otimes \mathrm{id}\right) \Delta(x) \quad \Delta_{z}^{\prime}(x)=\left(D_{z} \otimes \mathrm{id}\right) \Delta^{\prime}(x) \quad \forall x \in U_{q}(\widehat{g l}(2 \mid 2)) \tag{28}
\end{equation*}
$$

By means of D_{z}, the spectral dependent universal R-matrix $\mathcal{R}(z)$ of $U_{q}(\widehat{g l}(2 \mid 2))$ can be introduced [17] as

$$
\begin{equation*}
\mathcal{R}(z)=\left(D_{z} \otimes \mathrm{id}\right)(\mathcal{R}) \tag{29}
\end{equation*}
$$

with the following properties:

$$
\begin{align*}
& \mathcal{R}(z) \Delta_{z}(x)=\Delta_{z}^{\prime}(x) \mathcal{R}(z) \tag{30}\\
& \left(\Delta_{z} \otimes \mathrm{id}\right)(\mathcal{R}(w))=\mathcal{R}_{13}(z w) \mathcal{R}_{23}(w) \\
& \left(\mathrm{id} \otimes \Delta_{w}\right)(\mathcal{R}(z w))=\mathcal{R}_{13}(z) \mathcal{R}_{12}(z w) \tag{31}
\end{align*}
$$

where $\mathcal{R}_{12}(z)=\mathcal{R}(z) \otimes 1, \mathcal{R}_{23}(z)=1 \otimes \mathcal{R}(z), \mathcal{R}_{13}(z)=(\sigma \otimes \mathrm{id})\left(\mathcal{R}_{23}(z)\right)$. Equations (30) and (31) imply the Yang-Baxter equation with a spectral parameter for $\mathcal{R}(z)$:

$$
\begin{equation*}
\mathcal{R}_{12}(z) \mathcal{R}_{13}(z w) \mathcal{R}_{23}(w)=\mathcal{R}_{23}(w) \mathcal{R}_{13}(z w) \mathcal{R}_{12}(z) \tag{32}
\end{equation*}
$$

Generally, \mathcal{R} has the form $\mathcal{R}=\sum_{i} e_{i} \otimes e^{i}$ where $\left\{e_{i}\right\}\left(\left\{e^{i}\right\}\right)$ is a suitable basis of $U_{q}\left(\hat{b}_{+}\right)\left(U_{q}\left(\hat{b}_{-}\right)\right) . \hat{b}_{+}$and \hat{b}_{-}are the Borel subalgebras of $\widehat{g l}(2 \mid 2)$ and $U_{q}\left(\hat{b}_{ \pm}\right)$denote the corresponding graded Hopf subalgebras generated by $\left\{E_{0}^{i,+}, E_{n}^{i,+}, E_{n}^{i,-}, H_{0}^{j}, H_{n}^{j}, n>\right.$ $0, c, d\}$ and $\left\{E_{0}^{i,-}, E_{-n}^{i,-}, E_{-n}^{i,+}, H_{0}^{j}, H_{-n}^{j}, \quad n>0, c, d\right\}$ over $\mathbb{C}[[q-1]]$, respectively. Properties (31) are established by means of the quantum double construction [28]. A procedure to obtain explicit formulae for the universal R-matrix of affine quantum algebras in terms of the Cartan-Weyl basis built from the Chevalley generators can be found in [29]. Since a triangular structure of this form does not exist for $U_{q}(\widehat{s l}(2 \mid 2))$ generated by this basis, the Drinfeld generators are used for the construction of the universal R-matrix along similar lines.

Let the normal ordering in the positive root space Δ_{+}of $U_{q}(\widehat{s l}(2 \mid 2))$ be fixed by $\alpha_{1}, \ldots, \alpha_{1}+k_{1} \delta, \ldots, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\alpha_{2}+k_{2} \delta, \ldots, \alpha_{1}+\alpha_{2}+\alpha_{3}$,

$$
\begin{aligned}
& \ldots, \alpha_{1}+\alpha_{2}+\alpha_{3}+k_{3} \delta, \ldots, \alpha_{2}, \ldots, \alpha_{2}+k_{4} \delta, \ldots, \alpha_{2}+\alpha_{3}, \\
& \ldots, \alpha_{2}+\alpha_{3}+k_{5} \delta, \ldots, \alpha_{3}, \ldots, \alpha_{3}+k_{6} \\
& \ldots, \delta, 2 \delta, 3 \delta, \ldots, \alpha_{0}+\alpha_{1}+\alpha_{2}+l_{1} \delta \\
& \ldots, \alpha_{0}+\alpha_{1}+\alpha_{2}, \ldots, \alpha_{0}+\alpha_{1}+\alpha_{3}+l_{2} \delta \\
& \ldots, \alpha_{0}+\alpha_{1}+\alpha_{3}, \ldots, \alpha_{0}+\alpha_{1}+l_{3} \delta, \ldots, \alpha_{0}+\alpha_{1} \\
& \ldots, \alpha_{0}+\alpha_{2}+\alpha_{3}+l_{4} \delta, \ldots, \alpha_{0}+\alpha_{2}+\alpha_{3} \\
& \ldots, \alpha_{0}+\alpha_{3}+l_{5} \delta, \ldots, \alpha_{0}+\alpha_{3}, \ldots, \alpha_{0}+l_{6} \delta, \ldots, \alpha_{0} .
\end{aligned}
$$

A solution of (30) for $x \in U_{q}(\widehat{s l}(2 \mid 2))$ in terms of the Drinfeld generators is given by (29) with

$$
\begin{equation*}
\mathcal{R}=\breve{R} q^{-\frac{1}{2} \sum_{i, j=1}^{4} a_{i j}\left(h_{i} \otimes h_{j}\right)-\frac{1}{4} \lambda_{0}\left(h_{1}+h_{3}\right) \otimes\left(h_{1}+h_{3}\right)-c \otimes d-d \otimes c} \tag{33}
\end{equation*}
$$

with
$\breve{R}=R^{<} R^{(\delta)} R^{>}$
$R^{<}=R_{\alpha_{1}} R_{\alpha_{1}+\alpha_{2}} R_{\alpha_{1}+\alpha_{2}+\alpha_{3}} R_{\alpha_{2}} R_{\alpha_{2}+\alpha_{3}} R_{\alpha_{3}}$
$R_{\alpha_{i}}=\prod_{n=0}^{\rightarrow} \exp \left(\left(q-q^{-1}\right) \gamma^{-n} E_{n}^{i,+} \otimes E_{-n}^{i,-} \gamma^{n}\right)$
$R_{\alpha_{1}+\alpha_{2}}=\prod_{n=0}^{\rightarrow} \exp _{q^{2}}\left(\left(q-q^{-1}\right) \gamma^{-n}\left[E_{0}^{2,+}, E_{n}^{1,+}\right]_{q} \otimes\left[E_{-n}^{1,-}, E_{0}^{2,-}\right]_{q^{-1}} \gamma^{n}\right)$
$R_{\alpha_{2}+\alpha_{3}}=\prod_{n=0}^{\rightarrow} \exp _{q^{-2}}\left(-\left(q-q^{-1}\right) \gamma^{-n}\left[E_{0}^{3,+}, E_{n}^{2,+}\right]_{q} \otimes\left[E_{-n}^{2,-}, E_{0}^{3,-}\right]_{q^{-1}} \gamma^{n}\right)$
$R_{\alpha_{1}+\alpha_{2}+\alpha_{3}}=\prod_{n=0}^{\rightarrow} \exp \left(-\left(q-q^{-1}\right) \gamma^{-n}\left[E_{0}^{3,+},\left[E_{0}^{2,+}, E_{n}^{1,+}\right]_{q}\right]_{q}\right.$
$\left.\otimes\left[\left[E_{-n}^{1,-}, E_{0}^{2,-}\right]_{q^{-1}}, E_{0}^{3,-}\right]_{q^{-1}} \gamma^{n}\right)$
$R^{(\delta)}=\exp \left(-\frac{1}{2}\left(q-q^{-1}\right) \sum_{n=1}^{\infty} \frac{n}{[n]} \sum_{i, j=1}^{4} a_{i j} \gamma^{-\frac{1}{2} n} H_{n}^{i} \otimes H_{-n}^{j} \gamma^{\frac{1}{2} n}\right)$
$R^{>}=R_{\alpha_{0}+\alpha_{1}+\alpha_{2}} R_{\alpha_{0}+\alpha_{1}+\alpha_{3}} R_{\alpha_{0}+\alpha_{1}} R_{\alpha_{0}+\alpha_{2}+\alpha_{3}} R_{\alpha_{0}+\alpha_{3}} R_{\alpha_{0}}$
$R_{\alpha_{0}+\alpha_{i}+\alpha_{j}}=\prod_{n=1}^{\leftarrow} \exp \left(-\left(q-q^{-1}\right) q^{-h_{k}} E_{n}^{k,-} \otimes E_{-n}^{k,+} q^{h_{k}}\right) \quad k \neq 0, i, j$
$R_{\alpha_{0}+\alpha_{3}}=\prod_{n=1}^{\leftarrow} \exp _{q^{2}}\left(\left(q-q^{-1}\right) q^{-h_{1}-h_{2}}\left[E_{n}^{1,-}, E_{0}^{2,-}\right]_{q^{-1}} \otimes\left[E_{0}^{2,+}, E_{-n}^{1,+}\right]_{q} q^{h_{1}+h_{2}}\right)$

$$
\begin{gather*}
R_{\alpha_{0}+\alpha_{1}}=\prod_{n=1}^{\leftarrow} \exp _{q^{-2}}\left(-\left(q-q^{-1}\right) q^{-h_{2}-h_{3}}\left[E_{n}^{2,-}, E_{0}^{3,-}\right]_{q^{-1}} \otimes\left[E_{0}^{3,+}, E_{-n}^{2,+}\right]_{q} q^{h_{2}+h_{3}}\right) \\
R_{\alpha_{0}}=\prod_{n=1}^{\leftarrow} \exp \left(\left(q-q^{-1}\right) q^{-h_{1}-h_{2}-h_{3}}\left[\left[E_{n}^{1,-}, E_{0}^{2,-}\right]_{q^{-1}}, E_{0}^{3,-}\right]_{q^{-1}}\right. \\
\left.\otimes\left[E_{0}^{3,+},\left[E_{0}^{2,+}, E_{-n}^{1,+}\right]_{q}\right]_{q} q^{h_{1}+h_{2}+h_{3}}\right) \tag{36}
\end{gather*}
$$

In (34) and (36) the direction of increasing n is indicated by the arrow. For any set of parameters $\left\{\lambda_{n}, n>0\right\}$, the expression

$$
\breve{R} \cdot \exp \left(\frac{1}{4}\left(q-q^{-1}\right) \sum_{n=1}^{\infty} \frac{n}{[n]} \lambda_{n} \gamma^{-\frac{1}{2} n}\left(H_{n}^{1}+H_{n}^{3}\right) \otimes\left(H_{-n}^{1}+H_{-n}^{3}\right) \gamma^{\frac{1}{2} n}\right)
$$

yields another solution of (30) for $x \in U_{q}(\widehat{s l}(2 \mid 2))$. An expression for $\Delta\left(\Psi^{4, \pm}(z)\right)$ independent of the choice of $\left\{\lambda_{n}\right\}$ will be provided in section 4. Imposing the intertwining condition (30) for any $x \in U_{q}(\widehat{g l}(2 \mid 2))$ yields $\lambda_{n}=0$ for $n>0$. Since $S^{2}=$ id due to the particular choice of simple roots and (26), its inverse satisfies [30]

$$
\begin{equation*}
\mathcal{R}^{-1}(z)=(S \otimes \mathrm{id})(\mathcal{R}(z))=(\mathrm{id} \otimes S)(\mathcal{R}(z)) \tag{37}
\end{equation*}
$$

The dependence of the universal R-matrix of $U_{q}(\widehat{g l}(2 \mid 2))$ on d is contained entirely in the second term of the right-hand side of (33). Thus, following [17] the universal R-matrix for $U_{q}^{\prime}(\widehat{g l}(2 \mid 2))$ is defined by

$$
\begin{equation*}
R(z)=\mathcal{R}(z) q^{(c \otimes d+d \otimes c)} \tag{38}
\end{equation*}
$$

Writing $R_{i j}(z)=\sum_{n=0}^{\infty} R_{i j, n} z^{n}$ one may introduce the notation

$$
\begin{align*}
& R_{12}\left(z q^{ \pm c_{3}}\right)=\sum_{n=0}^{\infty} R_{12, n} z^{n}\left(\mathrm{id} \otimes \mathrm{id} \otimes q^{ \pm n c}\right) \\
& R_{13}\left(z q^{ \pm c_{2}}\right)=\sum_{n=0}^{\infty} R_{13, n} z^{n}\left(\mathrm{id} \otimes q^{ \pm n c} \otimes \mathrm{id}\right) \tag{39}\\
& R_{23}\left(z q^{ \pm c_{1}}\right)=\sum_{n=0}^{\infty} R_{23, n} z^{n}\left(q^{ \pm n c} \otimes \mathrm{id} \otimes \mathrm{id}\right)
\end{align*}
$$

Then for $R^{-}(z)=R(z), R^{+}(z)=\sigma\left(R^{-1}(z)\right)$ the Yang-Baxter equation reads

$$
\begin{align*}
& R_{12}^{ \pm}(z) R_{13}^{ \pm}\left(z w q^{\mp c_{2}}\right) R_{23}^{ \pm}(w)=R_{23}^{ \pm}(w) R_{13}^{ \pm}\left(z w q^{ \pm c_{2}}\right) R_{12}^{ \pm}(z) \tag{40}\\
& R_{12}^{-}\left(z q^{-c_{3}}\right) R_{13}^{-}(z w) R_{23}^{+}(w)=R_{23}^{+}(w) R_{13}^{-}(z w) R_{12}^{-}\left(z q^{c_{3}}\right)
\end{align*}
$$

From (31) and (37) one obtains the comultiplication and antipode formulae
$(\Delta \otimes \mathrm{id}) R^{-}(z)=R_{13}^{-}(z) R_{23}^{-}\left(z q^{c_{1}}\right)$
$(S \otimes \mathrm{id}) R^{-}(z)=\left(R^{-}\left(z q^{-c_{1}}\right)\right)^{-1}$
$(\mathrm{id} \otimes \Delta) R^{-}(z)=R_{13}^{-}(z) R_{12}^{-}\left(z q^{-c_{3}}\right)$
$(\mathrm{id} \otimes S) R^{-}(z)=\left(R^{-}\left(z q^{c_{2}}\right)\right)^{-1}$
$(\Delta \otimes \mathrm{id}) R^{+}(z)=R_{13}^{+}\left(z q^{-c_{2}}\right) R_{23}^{+}(z)$
$(S \otimes \mathrm{id}) R^{+}(z)=\left(R^{+}\left(z q^{c_{1}}\right)\right)^{-1}$
$(i d \otimes \Delta) R^{+}(z)=R_{13}^{+}\left(z q^{c_{2}}\right) R_{12}^{+}(z) \quad(i d \otimes S) R^{+}(z)=\left(R^{+}\left(z q^{-c_{2}}\right)\right)^{-1}$.

4. Vector representation and RSTS generators

For any zero-level representation $\pi_{W}: U_{q}^{\prime}(\widehat{g l}(2 \mid 2)) \rightarrow \operatorname{End}(W)$ the associated L-operators are introduced according to [33, 17, 34]:

$$
\begin{equation*}
L^{ \pm, W}(z)=\left(\pi_{W} \otimes \mathrm{id}\right) R^{ \pm}(z) \tag{42}
\end{equation*}
$$

Taking the image of (40) in $W_{z} \otimes W_{w}^{\prime}$ one obtains the $R L L$ relations
$R_{12}^{ \pm, W W^{\prime}}\left(\frac{z}{w}\right) L_{1}^{ \pm, W}(z) L_{2}^{ \pm, W^{\prime}}(w)=L_{2}^{ \pm, W^{\prime}}(w) L_{1}^{ \pm, W}(z) R_{12}^{ \pm, W W^{\prime}}\left(\frac{z}{w}\right)$
$R_{12}^{-, W W^{\prime}}\left(q^{-c} \frac{z}{w}\right) L_{1}^{-, W}(z) L_{2}^{+, W^{\prime}}(w)=L_{2}^{+, W^{\prime}}(w) L_{1}^{-, W}(z) R_{12}^{-, W W^{\prime}}\left(q^{c} \frac{z}{w}\right)$
where

$$
\begin{equation*}
R^{ \pm, W W^{\prime}}(z)=\left(\pi_{W} \otimes \pi_{W^{\prime}}\right) R^{ \pm}(z) \tag{44}
\end{equation*}
$$

Choosing a basis $\left\{w_{i}\right\}$ in W, one can regard $L^{ \pm, W}(z)$ as matrices with matrix elements $L_{i j}^{ \pm, W}(z) \in U_{q}(\widehat{g l}(2 \mid 2))$. Equation (41) yields the comultiplication formulae for the L operators:

$$
\begin{align*}
& \Delta L_{i j}^{-, W}(z)=\sum_{l=1}^{4}(-1)^{(|i|+|l|) \cdot(|j|+|l|)} L_{l j}^{-, W}\left(z q^{-c_{2}}\right) \otimes L_{i l}^{-, W}(z) \tag{45}\\
& \Delta L_{i j}^{+, W}(z)=\sum_{l=1}^{4}(-1)^{(|i|+|l|) \cdot(|j|+|l|)} L_{l j}^{+, W}(z) \otimes L_{i l}^{+, W}\left(z q^{c_{1}}\right) .
\end{align*}
$$

A finite-dimensional module of $U_{q}(s l(2 \mid 2))$ is provided by $W_{(4)}=\mathbb{C} w_{1} \oplus \mathbb{C} w_{2} \oplus \mathbb{C} w_{3} \oplus \mathbb{C} w_{4}$ with the action

$$
\begin{align*}
h_{i} w_{k} & =\left(\delta_{k, i}+\delta_{k, i+1}\right)(-1)^{i} w_{k} \quad i=1,2,3 \\
e_{i} w_{k} & =\delta_{k, i}(-1)^{i} w_{i+1} \tag{46}\\
f_{i} w_{k} & =\delta_{k, i+1} w_{i}
\end{align*}
$$

and the Z_{2}-grading $\left|w_{1}\right|=\left|w_{3}\right|=0, \quad\left|w_{2}\right|=\left|w_{4}\right|=1$. Making use of the evaluation homomorphism $\rho[31,32]$ allows us to equip $W^{(4)}$ with a representation $\pi_{W^{(4)}}: U_{q}^{\prime}(\widehat{s l}(2 \mid 2)) \rightarrow \operatorname{End}\left(W^{(4)}\right)$ completing (46) [22] by

$$
\begin{align*}
h_{0} w_{k} & =-\left(h_{1}+h_{2}+h_{3}\right) w_{k} \\
e_{0} w_{k} & =-q \delta_{k, 4} w_{1} \tag{47}\\
f_{0} w_{k} & =-q^{-1} \delta_{k, 1} w_{4} .
\end{align*}
$$

In terms of the Drinfeld generators the action of $U_{q}^{\prime}(\widehat{s l}(2 \mid 2))$ is obtained from (46) and (47) by means of (23):

$$
\begin{align*}
& E_{n}^{i,+} w_{k}=\delta_{k, i}(-1)^{i} q^{\left(1+(-1)^{i}\right) \frac{1}{2} n} w_{i+1} \quad i=1,2,3 \\
& E_{n}^{i,-} w_{k}=\delta_{k, i+1} q^{\left(1+(-1)^{i}\right) \frac{1}{2} n} w_{i} \tag{48}\\
& H_{n}^{i} w_{k}=\left(\delta_{k, i}+\delta_{k, i+1}\right)(-1)^{i} q^{\left(1-(-1)^{i}\right) \frac{1}{2} n} \frac{[n]}{n} w_{k} .
\end{align*}
$$

Since the universal R-matrix (33)-(36) only contains H_{n}^{4} in the combinations $H_{n}^{4} \otimes$ $\left(H_{-n}^{1}+H_{-n}^{3}\right)$ and $\left(H_{n}^{1}+H_{n}^{3}\right) \otimes H_{-n}^{4}$ and $\left(H_{ \pm n}^{1}+H_{ \pm n}^{3}\right) w_{k}=-q^{ \pm \frac{1}{2} n} w_{k} \forall k$, the R-matrix
$R^{W^{(4)} W^{(4)}}(z) \equiv R^{-, W^{(4)} W^{(4)}}(z)$ is determined by (48) up to a function of z constant throughout $W^{(4)} \otimes W^{(4)}$. Its non-vanishing entries read

$$
\begin{align*}
& R_{33}^{33}(z)=R_{11}^{11}(z) \\
& R_{44}^{44}(z)=R_{22}^{22}(z)=\frac{q^{2}-z}{1-q^{2} z} R_{11}^{11}(z) \\
& R_{i j}^{i j}(z)=\frac{(1-z) q}{1-q^{2} z} R_{11}^{11}(z) \tag{49}\\
& R_{i j}^{j i}(z)=(-1)^{|i| \cdot|j|} \frac{1-q^{2}}{1-q^{2} z} R_{11}^{11}(z) \quad \text { for } i<j \\
& R_{i j}^{j i}(z)=(-1)^{|i| \cdot|j|} \frac{\left(1-q^{2}\right) z}{1-q^{2} z} R_{11}^{11}(z) \quad \text { for } i>j
\end{align*}
$$

To evaluate the L-operators (42) corresponding to $W^{(4)}$, it is convenient to write the action of the generators H_{n}^{4} as

$$
\begin{align*}
& H_{0}^{4} w_{k}=-\left(\delta_{k, 1}-\delta_{k, 4}-\kappa_{0}\right) w_{k} \\
& H_{n}^{4} w_{k}=-\left(\delta_{k, 1}-\delta_{k, 4}-\kappa_{n}\right) \frac{[n]}{n} w_{k} \quad n \neq 0 \tag{50}
\end{align*}
$$

$L^{ \pm, W^{(4)}}$ depends on parameters $\left\{\kappa_{0}, \kappa_{n}\right\}$ and $\left\{\lambda_{0}, \lambda_{n}\right\}$ only through the common factor
$f^{ \pm}(z)=\exp \left(\pm \frac{1}{2}\left(q-q^{-1}\right) \sum_{n=1}^{\infty}\left(\kappa_{\mp n}-\lambda_{\mp n}\right)\left(H_{ \pm n}^{1}+H_{ \pm n}^{3}\right) \gamma^{\mp \frac{n}{2}} z^{n}\right) q^{ \pm \frac{1}{2}\left(\kappa_{0}-\lambda_{0}\right)\left(h_{1}+h_{3}\right)}$.
The dependence of the remaining part on the Drinfeld generators is conveniently formulated by means of a triangular decomposition:

$$
L^{ \pm, W^{(4)}}=f^{ \pm} \cdot\left(\begin{array}{cccc}
1 & & \cdots & 0 \tag{52}\\
A_{21}^{ \pm} & 1 & & \vdots \\
A_{31}^{ \pm} & A_{32}^{ \pm} & 1 & \\
A_{41}^{ \pm} & A_{42}^{ \pm} & A_{43}^{ \pm} & 1
\end{array}\right)\left(\begin{array}{cccc}
k_{1}^{ \pm} & & \cdots & 0 \\
& k_{2}^{ \pm} & & \vdots \\
\vdots & & k_{3}^{ \pm} & \\
0 & \cdots & & k_{4}^{ \pm}
\end{array}\right)\left(\begin{array}{cccc}
1 & B_{12}^{ \pm} & B_{13}^{ \pm} & B_{14}^{ \pm} \\
& 1 & B_{23}^{ \pm} & B_{24}^{ \pm} \\
\vdots & & 1 & B_{34}^{ \pm} \\
0 & \cdots & & 1
\end{array}\right)
$$

where the argument z is omitted for simplicity. The Drinfeld generators are related to the entries of (52) by
$\Psi^{i, \pm}\left(z^{\mp 1}\right)=\left(k_{i}^{ \pm}\left(z q^{ \pm \frac{1}{2}\left(1+(-1)^{i}\right)} \gamma^{ \pm \frac{1}{2}}\right)\right)^{-1} k_{i+1}^{ \pm}\left(z q^{ \pm \frac{1}{2}\left(1+(-1)^{i}\right)} \gamma^{ \pm \frac{1}{2}}\right) \quad$ for $i=1,2,3$
$\Psi^{4, \pm}\left(z^{\mp 1}\right)=\left(k_{1}^{ \pm}\left(z q^{ \pm 1} \gamma^{ \pm \frac{1}{2}}\right) k_{4}^{ \pm}\left(z q^{ \pm 1} \gamma^{ \pm \frac{1}{2}}\right)\right)^{-1}$
and
$\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \mp 1)}^{\infty} E_{ \pm n}^{i++} z^{n}= \pm(-1)^{i} B_{i i+1}^{ \pm}\left(z q^{ \pm \frac{1}{2}\left(1+(-1)^{i}\right)} \gamma^{\frac{1}{2}(1 \pm 1)}\right)$
$\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \pm 1)}^{\infty} E_{ \pm n}^{i,-} z^{n}= \pm A_{i+1 i}^{ \pm}\left(z q^{ \pm \frac{1}{2}\left(1+(-1)^{i}\right)} \gamma^{-\frac{1}{2}(1 \mp 1)}\right) \quad$ for $i=1,2,3$.

The choice $\kappa_{n}-\lambda_{n}=0 \forall n$ corresponds to the generalization of the Reshetikhin-Semenov-Tian-Shansky basis for the quantum affine algebra $U_{q}(\widehat{s l}(N))$ [25] to $U_{q}(\widehat{g l}(N \mid N))$ in the case $N=2$. With $\kappa_{0}-\lambda_{0}=1, \kappa_{n}-\lambda_{n}=q^{n}, \kappa_{-n}-\lambda_{-n}=1$ for $n>0$ the coproduct $\Delta\left(H_{ \pm n}^{4}\right)$ can be expressed via the coproduct of
$L_{11}^{ \pm}\left(\tilde{z}^{ \pm}\right)=q^{\mp \frac{1}{2}\left(h_{2}+h_{4}\right)} \exp \left(\mp \frac{1}{2}\left(q-q^{-1}\right) \sum_{n=1}^{\infty}\left(H_{ \pm n}^{2}+H_{ \pm n}^{4}\right) z^{n}\right) \quad$ with $\tilde{z}^{ \pm}=z q^{ \pm 1} \gamma^{ \pm \frac{1}{2}}$
which is obtained from (45) as

$$
\begin{align*}
\Delta\left(L_{11}^{ \pm}\left(\tilde{z}^{ \pm}\right)\right)= & \left(1 \otimes L_{11}^{ \pm}\left(\tilde{z}^{ \pm} q^{\frac{1}{2}(1 \pm 2) c_{1}}\right)\right) \\
& \cdot\left(1 \otimes 1-\sum_{i=2}^{4}(-1)^{i} A_{i 1}^{ \pm}\left(\tilde{z}^{ \pm} q^{-\frac{1}{2}(1 \mp 2) c_{2}}\right) \otimes B_{1 i}^{ \pm}\left(\tilde{z}^{ \pm} q^{\frac{1}{2}(1 \pm 2) c_{1}}\right)\right) \\
& \cdot\left(L_{11}^{ \pm}\left(\tilde{z}^{ \pm} q^{-\frac{1}{2}(1 \mp 2) c_{2}}\right) \otimes 1\right) \tag{56}
\end{align*}
$$

where

$$
\begin{align*}
& A_{31}^{ \pm}(z)= \pm\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \pm 1)}^{\infty}\left[E_{ \pm n}^{1,-}, E_{0}^{2,-}\right]_{q^{-1}} \gamma^{\frac{1}{2} n(1 \mp 1)} z^{n} \\
& A_{41}^{ \pm}(z)= \pm\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \pm 1)}^{\infty}\left[\left[E_{ \pm n}^{1,-}, E_{0}^{2,-}\right]_{q^{-1}}, E_{0}^{3,-}\right]_{q^{-1}} \gamma^{\frac{1}{2} n(1 \mp 1)} z^{n} \tag{57}\\
& B_{13}^{ \pm}(z)=\mp\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \mp 1)}^{\infty}\left[E_{0}^{2,+}, E_{ \pm n}^{1,+}\right]_{q} \gamma^{-\frac{1}{2} n(1 \pm 1)} z^{n} \\
& B_{14}^{ \pm}(z)= \pm\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \mp 1)}^{\infty}\left[E_{0}^{3,+},\left[E_{0}^{2,+}, E_{ \pm n}^{1,+}\right]_{q}\right]_{q} \gamma^{-\frac{1}{2} n(1 \pm 1)} z^{n}
\end{align*}
$$

Similar formulae can be derived considering the operators $K^{ \pm}(z)=\left(\mathrm{id} \otimes \pi_{W^{(4)}}\right) R^{\mp}(z)$ with the coproducts $\Delta\left(K_{i j}^{+}(z)\right)=\sum_{l=1}^{4} K_{i l}^{+}(z) \otimes K_{l j}^{+}\left(z q^{c_{1}}\right)$ and $\Delta\left(K_{i j}^{-}(z)\right)=\sum_{l=1}^{4} K_{i l}^{-}\left(z q^{-c_{2}}\right) \otimes$ $K_{l j}^{-}(z)$ according to (41). Then $\Delta\left(H_{ \pm n}^{2}-H_{ \pm n}^{4}\right)$ follows from the coproduct of

$$
\begin{equation*}
K_{44}^{ \pm}\left(\tilde{z}^{ \pm}\right)=q^{\mp \frac{1}{2}\left(h_{2}-h_{4}\right)} \exp \left(\mp \frac{1}{2}\left(q-q^{-1}\right) \sum_{n=1}^{\infty}\left(H_{ \pm n}^{2}-H_{ \pm n}^{4}\right) z^{n}\right) \tag{58}
\end{equation*}
$$

which is given by

$$
\begin{align*}
\Delta\left(K_{44}^{ \pm}\left(\tilde{z}^{ \pm}\right)\right)= & \left(K_{44}^{ \pm}\left(\tilde{z}^{ \pm} q^{-\frac{1}{2}(1 \mp 2) c_{2}}\right) \otimes 1\right) \\
& \cdot\left(1 \otimes 1+\sum_{i=1}^{3}(-1)^{i} A_{4 i}^{ \pm}\left(\tilde{z}^{ \pm} q^{-\frac{1}{2}(1 \mp 2) c_{2}}\right) \otimes B_{i 4}^{ \pm}\left(\tilde{z}^{ \pm} q^{\frac{1}{2}(1 \pm 2) c_{1}}\right)\right) \\
& \cdot\left(1 \otimes K_{44}^{ \pm}\left(\tilde{z}^{ \pm} q^{\frac{1}{2}(1 \pm 2) c_{1}}\right)\right) \tag{59}
\end{align*}
$$

with

$$
\begin{align*}
& B_{24}^{ \pm}(z)=\mp\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \mp 1)}^{\infty}\left[E_{0}^{3,+}, E_{ \pm n}^{2,+}\right]_{q} q^{\mp n} \gamma^{-\frac{1}{2} n(1 \pm 1)} z^{n} \tag{60}\\
& A_{42}^{ \pm}(z)=\mp\left(q-q^{-1}\right) \sum_{n=\frac{1}{2}(1 \pm 1)}^{\infty}\left[E_{ \pm n}^{2,-}, E_{0}^{3,-}\right]_{q^{-1}} q^{\mp n} \gamma^{\frac{1}{2} n(1 \mp 1)} z^{n} .
\end{align*}
$$

Combining equations (56) and (59) provides a definition of the coproduct of $\Psi^{4, \pm}(z)$ consistent with the quasitriangular structure. It can easily be seen that a different choice of $\left\{\kappa_{n}-\lambda_{n}\right\}$ gives rise to the same formulae for the coproduct of the right hand sides of (55) and (58) by observing that the coproduct of $\left(H_{ \pm n}^{1}+H_{ \pm n}^{3}\right)$ is given by
$\Delta\left(H_{ \pm n}^{1}+H_{ \pm n}^{3}\right)=\left(H_{ \pm n}^{1}+H_{ \pm n}^{3}\right) \otimes \gamma^{-\frac{1}{2} n(1 \neq 2)}+\gamma^{\frac{1}{2} n(1 \pm 2)} \otimes\left(H_{ \pm n}^{1}+H_{ \pm n}^{3}\right)$
independent of $\left\{\kappa_{n}, \lambda_{n}\right\}$. Thus equation (56) (or equation (59)) can be used to set up the intertwining condition (30) for all $x \in U_{q}(\widehat{g l}(2 \mid 2))$. This requirement fixes \mathcal{R} as given in (33)-(36) up to the parameter λ_{0}.

Finally, the antipode of $\Psi^{4, \pm}(z)$ is obtained making use of (37) to evaluate the antipodes of $L_{11}^{ \pm}(z)$ and $K_{44}^{ \pm}(z)$:

$$
\begin{align*}
S\left(L_{11}^{ \pm}(z)\right)= & \left(L_{11}^{ \pm}\left(z \gamma^{\mp 1}\right)\right)^{-1}+\left(\Psi^{1, \pm}\left(z^{\mp 1} \gamma^{\mp 1}\right) \Psi^{3, \pm}\left(z^{\mp 1} \gamma^{\mp 1}\right)\right)^{-\frac{1}{2}} \\
& \cdot \sum_{i=2}^{4} B_{1 i}^{ \pm}\left(z \gamma^{\mp 1}\right)\left(k_{i}^{ \pm}\left(z \gamma^{\mp 1}\right)\right)^{-1} A_{i 1}^{ \pm}\left(z \gamma^{\mp 1}\right) \tag{62}\\
S\left(K_{44}^{ \pm}(z)\right)= & \left(K_{44}^{ \pm}\left(z \gamma^{\mp 1}\right)\right)^{-1}+\left(\Psi^{1, \pm}\left(z^{\mp 1} \gamma^{\mp 1}\right) \Psi^{3, \pm}\left(z^{\mp 1} \gamma^{\mp 1}\right)\right)^{-\frac{1}{2}} \\
& \cdot \sum_{i=1}^{3} A_{4 i}^{ \pm}\left(z \gamma^{\mp 1}\right) k_{i}^{ \pm}\left(z \gamma^{\mp 1}\right) B_{i 4}^{ \pm}\left(z \gamma^{\mp 1}\right) .
\end{align*}
$$

5. An infinite-dimensional $U_{q}(g l(2 \mid 2))$ module

Motivated by physical applications to two-dimensional disordered systems [7] the remainder of this paper focuses on evaluation modules associated with a pair of infinite-dimensional $U_{q}(g l(2 \mid 2))$ representations. The modules V and \hat{V} are generated by the action of $U_{q}(g l(2 \mid 2))$ on the elements $v_{0,0}$ and $\hat{v}_{0,0}$ characterized by

$$
\begin{array}{lll}
h_{1} v_{0,0}=h_{3} v_{0,0}=0 & h_{2} v_{0,0}=h_{4} v_{0,0}=-v_{0,0} & e_{i} v_{0,0}=0 \\
h_{1} \hat{v}_{0,0}=h_{3} \hat{v}_{0,0}=0 & h_{2} \hat{v}_{0,0}=h_{4} \hat{v}_{0,0}=\hat{v}_{0,0} & f_{i} \hat{v}_{0,0}=0 \tag{63}
\end{array}
$$

for $i=1,2,3$. The basis vectors of V and \hat{V} are conveniently denoted by $v_{k, p}$ and $\hat{v}_{k, p}$ respectively [22], where $k=0,1,2,3$ and $p=0,1,2, \ldots$ and the \mathbb{Z}_{2}-grading is defined by $\left|v_{0, p}\right|=\left|\hat{v}_{0, p}\right|=\left|v_{3, p}\right|=\left|\hat{v}_{3, p}\right|=0,\left|v_{1, p}\right|=\left|\hat{v}_{1, p}\right|=\left|v_{2, p}\right|=\left|\hat{v}_{2, p}\right|=1$. By means of the evaluation homomorphism ρ they can be lifted to modules of $U_{q}^{\prime}(\hat{s l}(2 \mid 2)) . V$ is equipped
with the following representation $\pi_{V}: U_{q}^{\prime}(\widehat{s l}(2 \mid 2)) \rightarrow \operatorname{End}(V)$:

$$
\begin{array}{ll}
\rho\left(E_{m}^{1,+}\right) v_{0, p}=-q^{-2 m(p-1)}[p] v_{2, p-1} & \rho\left(E_{m}^{1,-}\right) v_{0, p}=\rho\left(E_{m}^{1,-}\right) v_{1, p}=0 \\
\rho\left(E_{m}^{1,+}\right) v_{1, p}=q^{-2 m p} v_{3, p} & \rho\left(E_{m}^{1,-}\right) v_{2, p}=q^{-2 m p} v_{0, p+1} \\
\rho\left(E_{m}^{1,+}\right) v_{2, p}=\rho\left(E_{m}^{1,+}\right) v_{3, p}=0 & \rho\left(E_{m}^{1,-}\right) v_{3, p}=-q^{-2 m p}[p+1] v_{1, p} \\
\rho\left(E_{m}^{2,+}\right) v_{0, p}=\rho\left(E_{m}^{2,+}\right) v_{1, p}=0 & \rho\left(E_{m}^{2,-}\right) v_{0, p}=-q^{-m(2 p-1)}[p+1] v_{2, p} \\
\rho\left(E_{m}^{2,+}\right) v_{2, p}=q^{-m(2 p-1)} v_{0, p} & \rho\left(E_{m}^{2,-}\right) v_{1, p}=q^{-m(2 p+1)} v_{3, p+1} \tag{64}\\
\rho\left(E_{m}^{2,+}\right) v_{3, p}=-q^{-m(2 p-1)}[p] v_{1, p-1} & \rho\left(E_{m}^{2,-}\right) v_{2, p}=\rho\left(E_{m}^{2,-}\right) v_{3, p}=0 \\
\rho\left(E_{m}^{3,+}\right) v_{0, p}=\rho\left(E_{m}^{3,+}\right) v_{2, p}=0 & \rho\left(E_{m}^{3,-}\right) v_{0, p}=-q^{2 m}[p] v_{1, p-1} \\
\rho\left(E_{m}^{3,+}\right) v_{1, p}=-q^{2 m} v_{0, p+1} & \rho\left(E_{m}^{3,-}\right) v_{2, p}=-q^{2 m} v_{3, p} \\
\rho\left(E_{m}^{3,+}\right) v_{3, p}=-q^{2 m}[p+1] v_{2, p} & \rho\left(E_{m}^{3,-}\right) v_{1, p}=\rho\left(E_{m}^{3,-}\right) v_{3, p}=0
\end{array}
$$

and

$$
\begin{align*}
& \rho\left(H_{m}^{1}\right) v_{k, p}=-\rho\left(H_{m}^{3}\right) v_{k, p}=-\frac{1}{m} q^{m\left(p-2+\delta_{k, 0}\right)}\left[m\left(p+1-\delta_{k, 0}\right)\right] v_{k, p} \\
& \rho\left(H_{m}^{2}\right) v_{k, p}=-\frac{1}{m} q^{m\left(p-2+2 \delta_{k, 1}+\delta_{k, 3}\right)}\left[m\left(p+1-\delta_{k, 3}\right)\right] v_{k, p} . \tag{65}
\end{align*}
$$

Since $\pi_{V}(c)=0$, the operator

$$
\begin{equation*}
R^{V V}(z)=\left(\pi_{V} \otimes \pi_{V}\right)(R(z)) \tag{66}
\end{equation*}
$$

satisfies the Yang-Baxter equation

$$
R_{12}^{V V}(z) R_{13}^{V V}(z w) R_{23}^{V V}(w)=R_{23}^{V V}(w) R_{13}^{V V}(z w) R_{12}^{V V}(z)
$$

As in section 4, varying the action of H_{n}^{4} on the module V just results in a change of a z-dependent factor common to all entries of the R-matrix. The action of H_{0}^{4} on the modules introduced in the context of disordered systems [7] suggests the choice

$$
\begin{equation*}
H_{n}^{4} v_{0,0}=-\frac{[n]}{n} v_{0,0} \quad \text { for } n \neq 0 \tag{67}
\end{equation*}
$$

Besides $R^{V V}(z)$, the models proposed in [7] involve the limit $q \rightarrow-1$ of $R^{\hat{V} V}(z)$ and $R^{V \hat{V}}(z)$. The relations of the corresponding R-matrices of the affine quantum super algebra among each other can be obtained by relating \hat{V} to a module dual to V. The dual module V^{*} is introduced as the dual linear space to V with a $U_{q}^{\prime}(\widehat{g l}(2 \mid 2))$ structure given by

$$
\begin{equation*}
\left\langle a\left(v^{*}\right) \mid v\right\rangle=(-1)^{|a| \cdot\left|v^{*}\right|}\left\langle v^{*} \mid S(a) v\right\rangle \quad a \in U_{q}^{\prime}(\widehat{g l}(2 \mid 2)) . \tag{68}
\end{equation*}
$$

Let the dual basis be fixed by the canonical pairing $\left\langle v_{l, r}^{*}, v_{k, p}\right\rangle=\delta_{k, l} \delta_{p, r}$. Following [17] one finds that

$$
\begin{align*}
& R^{V^{*} V}(z)=\left(\left(R^{V V}(z)\right)^{-1}\right)^{T_{1}} \\
& R^{V V^{*}}(z)=\left(\left(R^{V V}(z)\right)^{-1}\right)^{T_{2}} \tag{69}\\
& R^{V^{*} V^{*}}(z)=\left(R^{V V}(z)\right)^{T_{1} T_{2}} .
\end{align*}
$$

Here T_{1} and T_{2} denote the graded transpositions over the first and second space, respectively. They are defined in terms of the usual transpositions by

$$
\begin{align*}
& R^{T_{1}}=R^{t_{1}}-2((C-\mathrm{id}) \otimes \mathrm{id}) R^{t_{1}}(C \otimes \mathrm{id}) \\
& R^{T_{2}}=R^{t_{2}}-2(\mathrm{id} \otimes(C-\mathrm{id})) R^{t_{2}}(\mathrm{id} \otimes C) \tag{70}
\end{align*}
$$

where the map $C: V \rightarrow V$ is given by $C v_{k, p}=\left|v_{k, p}\right| v_{k, p}$. As a $U_{q}(g l(2 \mid 2))$ module, V^{*} is related to the module \hat{V} introduced in [22] by

$$
\begin{equation*}
v_{k, p}^{*}=\kappa_{k, p} \hat{v}_{k, p} \quad \text { with } \kappa_{k, p}=(-1)^{p+\delta_{k, 1}} q^{-(p+1)\left(p+\left|v_{k, p}\right|\right)}[p+1]^{\left|v_{k, p}\right|} \tag{71}
\end{equation*}
$$

Let matrix elements be assigned to $R^{V V}(z)$ according to

$$
\begin{equation*}
R^{V V}(z)\left(v_{k, p} \otimes v_{l, r}\right)=\sum_{k^{\prime}, l^{\prime}, p^{\prime}, r^{\prime}} R_{k, p, l, r}^{k^{\prime}, p^{\prime} ; l^{\prime}, r^{\prime}}(z) v_{k^{\prime}, p^{\prime}} \otimes v_{l^{\prime}, r^{\prime}} \tag{72}
\end{equation*}
$$

and analogously for the remaining entries. Then from (69) one obtains the relations

$$
\begin{align*}
& R_{\widehat{k, p} ; l, r}^{\widehat{k^{\prime}, p^{\prime}} ; l^{\prime}, r^{\prime}}\left(q^{2} z^{-1}\right)=\frac{\kappa_{k^{\prime}, p^{\prime}}}{\kappa_{k, p}}(-1)^{\left(\left|k^{\prime}\right|-|k|\right)(|k|+1)}\left(R^{-1}\right)_{k^{\prime}, p^{\prime} ; l, r}^{k, p ; l^{\prime}, r^{\prime}}\left(z^{-1}\right) \\
& R_{k, p ;, \widehat{l}, r}^{k^{\prime}, p^{\prime} ; \widehat{l^{\prime}, r^{\prime}}}\left(q^{-2} z^{-1}\right)=\frac{\kappa_{l^{\prime}, r^{\prime}}}{\kappa_{l, r}}(-1)^{\left.|l|| | l^{\prime}|-|l||\right)}\left(R^{-1}\right)_{k, p ; l^{\prime}, r^{\prime}}^{k^{\prime}, p^{\prime} ; l, r}\left(z^{-1}\right) \tag{73}\\
& R_{\widehat{k, p} ; \overline{l, r}}^{\widehat{k^{\prime}, p^{\prime}} ; \widehat{l^{\prime}, r^{\prime}}}(z)=\frac{\kappa_{k^{\prime}, p^{\prime}} \kappa_{l^{\prime}, r^{\prime}}}{\kappa_{k, p} \kappa_{l, r}}(-1)^{|k||l|+\left|k^{\prime}\right|\left|l^{\prime}\right|} R_{k^{\prime}, p^{\prime} ; l^{\prime}, r^{\prime}}^{k, p ; l, r}(z) .
\end{align*}
$$

Explicit expressions for the above R-matrices, as well as a detailed description of the associated disordered systems, will be given elsewhere. Vertex models built from $R_{V V}(z)$ only may be studied by means of the algebraic Bethe ansatz. Ferromagnetic superspin chains involving the module V were considered in [11]. However, due to the non-integrability of the module V, the analysis of models accommodating both V and V^{*} requires much further investigation.

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (Forschergruppe HO 955/2-1) is gratefully acknowledged. The investigation was started at the Max Planck Institute for Physics of Complex Systems in Dresden. The author is indebted to H Naether for providing her with some of the literature on the subject.

References

[1] Nersesyan A A, Tsvelik A M and Wenger F 1994 Disorder effects in two-dimensional d-wave superconductors Phys. Rev. Lett. 72 2628-31
Nersesyan A A, Tsvelik A M and Wenger F 1995 Disordered effects in two-dimensional Fermi systems with conical spectrum: exact results for the density of states Nucl. Phys. B 438 561-88
Bernard D 1995 On the random vector potential in two dimensions Nucl. Phys. B 441 471-82
Mudry C, Chamon C and Wen X-G 1996 Two-dimensional conformal field theory for disordered systems at criticality Nucl. Phys. B 466 383-443
Chamon C, Mudry C and Wen X-G 1996 Instability of the disordered critical points of Dirac fermions Phys. Rev. B 53 R7638
Caux J S, Kogan I I and Tsvelik A M 1996 Logarithmic operators and hidden continuous symmetry in critical disordered models Nucl. Phys. B 466444
Kogan I I, Mudry C and Tsvelik A M 1996 Liouville theory as a model for prelocalized states in disordered conductors Phys. Rev. Lett. 77707

Castillo H E, Chamon C, Fradkin E, Goldbart P M and Mudry C 1997 Exact calculation of multifractal exponents of the critical wave function of Dirac fermions in a random magnetic field Preprint condmat/9706084
[2] Rozansky L and Saleur H 1992 Quantum field theory for the multi-variable Alexander-Conway polynomial Nucl. Phys. B 376 461-509
[3] Dotsenko Vik S and Dotsenko Vl S 1983 Critical behavior of the phase transition in the 2D Ising model with impurities Adv. Phys. 32 129-72
Shalaev B N 1994 Critical behavior of the two-dimensional Ising model with random bonds Phys. Rep. 237 129-88
[4] Ludwig A M M, Fisher M P A, Shankar R and Grinstein G 1994 Integer quantum Hall transition: an alternative approach and exact results Phys. Rev. B 50 7526-52
[5] Destri C and de Vega H J 1988 Integrable quantum field theories and conformal field theories from lattice models in the light-cone approach Phys. Lett. 201B 261-68
Destri C and de Vega H J 1989 Light-cone lattices and the exact solution of chiral fermions and sigma models J. Phys. A: Math. Gen. 22 1329-53

Bernard D 1995 (Perturbed) conformal field theory applied to 2d disordered systems: an introduction Preprint hep-th/9509137
[6] Cabra D C, Honecker A, Mussardo G and Pujol P 1997 A non-perturbative approach to the random-bond Ising model Preprint hep-th/9705180
[7] Zirnbauer M R 1997 Towards a theory of the integer quantum Hall transition: continuum limit of the Chalker-Coddington model J. Math. Phys. 38 2007-36
[8] Jimbo M and Miwa T 1995 Algebraic analysis of solvable lattice models CBMS Regional Conference Series in Mathematics vol 85 (Providence, RI: American Mathematical Society)
[9] Bougourzi A H 1997 Bosonization of quantum affine groups and its applications to the higher spin model Preprint q-alg/9706015
[10] Korepin V E, Izergin A G, Essler F H L and Uglov D B 1994 Correlation function of the spin- $\frac{1}{2} X X X$ antiferromagnet Phys. Lett. 190A 182-4
[11] Balents L, Fisher M P A and Zirnbauer M R 1996 Chiral Metal as a ferromagnetic super spin chain Nucl. Phys. B 483601
Gruzberg I A, Read N and Sachdev S 1997 Scaling and crossover functions for the conductance in the directed network model of edge states Phys. Rev. B 5510593
Gruzberg I A, Read N and Sachdev S 1997 Conductance and its universal fluctuations in the directed network model at the crossover to the quasi-one-dimensional regime Preprint cond-mat/9704032
[12] Bazhanov V V and Shadrikov A G 1987 Trigonometric solutions of triangle equations. Simple Lie superalgebras Theor. Math. Phys. (USA) 73 1302-12
[13] Chang D, Phillips I and Rozansky L 1992 R-matrix approach to quantum superalgebra $s u_{q}(m \mid n) \mathrm{J}$. Math. Phys. 33 3710-5
[14] Zhang R B 1992 Universal L-operator and invariants of the quantum supergroup $U_{q}(g l(m \mid n))$ J. Math. Phys. 33 1970-9
[15] Jimbo M 1986 A q-analogue of $U_{q}(\widehat{g l}(N+1))$, Hecke algebra, and the Yang-Baxter equation J. Math. Phys. 11 247-52
[16] Zhang R B 1996 Symmetrizable quantum affine superalgebras and their representations Preprint qalg/9612020
[17] Frenkel I and Reshetikhin N Yu 1992 Quantum affine algebras and holonomic difference equations Commun. Math. Phys. 146 1-60
[18] Kimura K, Shiraishi J, Uchiyama J 1996 A level-one representation of the quantum affine superalgebra $U_{q}(\widehat{s l}(M+1 \mid N+1))$ Preprint q -alg/9605047
[19] Essler F H L and Korepin V E 1992 Higher conservation laws and algebraic Bethe Ansätze for the supersymmetric $J-t$ model Phys. Rev. B 46 9147-62
Foerster A and Karowski M 1993 The supersymmetric $t-J$ model with quantum group invariance Nucl. Phys. B 408 512-34
Maassarani Z $1995 U_{q} \operatorname{osp}(2,2)$ lattice models J. Phys. A: Math. Gen. 28 1305-23
Bracken A J, Gould M D, Links J R and Zhang Y-Z 1995 New supersymmetric and exactly solvable model of correlated electrons Phys. Rev. Lett. 74 2768-71
Pfannmüeller M P and Frahm H 1996 Algebraic Bethe ansatz for $g l(2 \mid 1)$ invariant vertex models Preprint cond-mat/9604082
[20] Drinfeld V G 1988 A new realization of Yangians and quantized affine algebras Sov. Math. Dokl. 36 212-6
[21] Yamane H 1996 On defining relations of the Lie superalgebras and their quantized universal enveloping
superalgebras Preprint q-alg/9603015
[22] Gade R M 1997 On the quantum affine superalgebra $U_{q}(\widehat{g l}(2 \mid 2))$ at level one Nucl. Phys. B 500 547-64
[23] Zirnbauer M R 1994 Towards a theory of the integer quantum Hall transition: from the nonlinear sigma model to superspin chains Ann. Phys., Lpz. 3 513-177
[24] Khoroshkin S M and Tolstoy V N 1991 Universal R-matrix for quantized (super)algebras Commun. Math. Phys. 141 599-617
[25] Ding J and Frenkel I B 1993 Isomorphism of two realizations of quantum affine algebra $U_{q}(\widehat{g l}(n))$ Commun. Math. Phys. 156 277-300
Ding J and Iohara K Drinfeld comultiplication and vertex operators, RIMS-1091
[26] Zhang Y-Z 1997 Comments on Drinfeld realization of quantum affine superalgebra $U_{q}\left[g l(m \mid n)^{(1)}\right]$ and its Hopf algebra structure Preprint q-alg/9703020
[27] Ding J and Feigin B 1996 Difference equations of quantum current operators and parafermion construction Preprint q-alg/9610023
[28] Drinfeld V G 1986 Quantum groups Proc. 1986 Int. Congr. of Mathematicians ed A M Gleason (Berkeley, CA: American Mathematical Society)
[29] Khoroshkin S M and Tolstoy V N 1993 The Cartan-Weyl basis and the universal R-matrix for quantum KacMoody algebras and superalgebras Proc. Int. Workshop on Mathematical Physics 'Quantum Symmetries' (2nd Wigner Symposium, Goslar, Germany, July 1991) ed H-D Doebner and V K Dobrev, pp 336-51
[30] Drinfeld V G 1990 On almost cocommutative Hopf algebras Leningrad Math. J. 1 321-42
[31] Jimbo M 1985 A q-analogue of $U(g l(N+1))$, Hecke algebra, and the Young-Baxter equation Lett. Math. Phys. 10 63-9
[32] Zhang R B 1992 Universal L-operator and invariants of the quantum supergroup $U_{q}(g l(m \mid n))$ J. Math. Phys. 33 1970-9
[33] Reshetikhin N Y and Semenov-Tian-Shansky M A 1990 Central extensions of quantum current groups Lett. Math. Phys. 19 133-42
[34] Foda O, Iohara K, Jimbo M, Kedem R, Miwa T and Yan H 1995 Notes on highest weight modules of the elliptic algebra $\mathcal{A}_{q, p}(\widehat{s l})$ Prog. Theor. Phys. Suppl. (Japan) 118 1-34

