
Universal R-matrix and graded Hopf algebra structure of 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 4909

(http://iopscience.iop.org/0305-4470/31/21/009)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 4909–4925. Printed in the UK PII: S0305-4470(98)88024-4

Universal R-matrix and graded Hopf algebra structure of
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Abstract. An explicit formula for the universal R-matrix ofUq
(
ĝl(2|2)) is given using

Drinfeld’s basis. Its generators are chosen according to a non-standard set of positive simple
roots. The expression implies an extension of the standard graded Hopf algebraUq

(
ŝl(2|2))

defined in terms of its Chevalley generators toUq
(
ĝl(2|2)). In addition to a four-dimensional

vector representation, an infinite-dimensional representation ofUq
(
gl(2|2)) suitable for the

description of a model related to the integer quantum Hall transition is considered.

1. Introduction

A number of models associated with affine superalgebras have attracted recent attention
in context with two-dimensional disordered systems. Most investigations have focused on
electronic systems in the presence of a random Abelian or non-Abelian vector field [1]
which are accessible by analytic treatment due to an underlying structure encoded by the
current superalgebrâgl(n|n). Before this, a detailed study of the Wess–Zumino–Witten
model on the supergroupGl(1|1) had been presented in [2]. Furthermore, Dirac fermions
with a random mass have been discussed both in relation to the random bond Ising model [3]
and several aspects of the integer quantum Hall transition [4]. For a Gaussian distributed
mass, averaging over the disorder yields a Gross–Neveu model associated withosp(2n|2n)
which can be viewed as an integrable perturbation of the conformally invariant system
characterized by thêosp(2n|2n)-current superalgebra [5]. The corresponding formulation
in terms of a massless scattering matrix was considered in [6].

A very recent study proposes the construction of an integrable vertex model based on a
particular module ofgl(2|2) to the aim of describing the integer quantum Hall transition [7].
The appropriate affine algebra is expected to involve a graded Yangian structure related to
gl(2|2). Another approach consists in studying the corresponding vertex models related to
the quantum affine superalgebraUq

(
ĝl(2|2)) and to extract results for thegl(2|2)-invariant

case from the limitq →−1. This limiting procedure has been applied previously to obtain
correlation functions for theXXX spin chain from those of theXXZ chain calculated by
two different methods [8–10].

So far, studies of integrable vertex models associated with a Lie (super)algebra consider
systems with statistical variables taking values in its finite-dimensional modules. In contrast,
the description of disordered problems requires constructions taking into account infinite-
dimensional modules ofgl(n|n) or osp(2n|2n) [7, 11].

Trigonometric solutions of the graded Yang–Baxter equation related to the vector
representations ofsl(n|m) and osp(2n|m) were constructed in [12]. As emphasized
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4910 R M Gade

in [13], in the casen = m the non-simple Lie superalgebragl(n|n) rather than
sl(n|n) has to be considered. The irreducible integrable highest-weight representations
of affine quantum superalgebras have been classified [14]. The evaluation homomorphism
established forUq

(
ŝl(n)

)
[15] can be generalized to equip anyUq

(
sl(n|m)) module with a

U ′q
(
ŝl(n|m)) structure [16]. A method developed for non-critical systems invariant under

an affine quantum algebra [8] provides expressions for the correlators in terms of vertex
operators [17]. Their evaluation is achieved making use of a representation of the current
algebra and its highest weight modules by means of deformed bosonic oscillators. An
attempt to generalize this procedure to aUq

(
ŝl(2|1)) model can be found in [18]. Because

of their relevance to systems of interacting electrons in one spatial dimension, vertex models
built from representations ofgl(2|1) or their q-deformations have been studied using Bethe
ansatz in [19].

As the non-simple structure ofsl(n|n) or gl(n|n) gives rise to several particular features,
the casem = n is excluded in many studies of models related tosl(m|n).

In this paper, the graded Hopf algebra structure ofUq
(
ĝl(2|2)) is studied.Uq

(
ŝl(2|2))

does not admit a quasitriangular structure with respect to the standard definition of coproduct
and antipode in terms of its Chevalley generators. A formulation of a quantum affine
superalgebra by Drinfeld generators [20, 21] adapted to the particular set of positive
simple roots imposed by the intended physical applications [22] permits its extension to
Uq
(
ĝl(2|2)). To define the graded Hopf algebra structure, coproduct and antipode need

to be introduced for the additional generators. A suitable definition is supplied by the
construction of the spectral-dependent universal R-matrixR(z) of Uq

(
ĝl(2|2)). An explicit

expression is given forR(z) in terms of Drinfeld’s generators. Formulae for the coproduct
and antipode of the additional generators follow from a partial application of the universal
R-matrix to a four-dimensional vector representation associated with the chosen set of simple
roots. The implications of the non-simplicity relevant to the construction are discussed.

In view of the applications suggested in [7, 23], an infinite-dimensional moduleV of
Uq
(
gl(2|2)) generated from an element characterized by one of the fundamental weights

is considered. The model relevant to the description of an integer quantum Hall transition
involves an R-matrix acting on the tensor product of the moduleV with its dual module
V ∗. In analogy with the case of a quantum affine algebra [17] the quasitriangular structure
implies a crossing symmetry which relates this R-matrix to the R-matrix acting on a pair
of modulesV and thereby facilitates its computation considerably.

Generalization of the investigations toUq
(
ĝl(2n|2n)) is straightforward. A detailed

description of the disordered systems related toUq
(
ĝl(2|2))-vertex models will be published

separately.
Section 2 reviews the definition of the graded Hopf algebraUq

(
gl(2|2)). In section 3

the quantum affine superalgebraUq
(
ŝl(2|2)) and its Hopf algebra structure are introduced in

terms of Chevalley generators. Then using Drinfeld’s basisUq
(
ĝl(2|2)) is defined. Section 4

provides the universal R-matrix. Formulae for the coproduct and antipode completing the
Hopf algebra structure ofUq

(
ŝl(2|2)) are derived in section 5. Section 6 deals with the

infinite-dimensionalUq
(
gl(2|2)) modules.

2. The quantum affine superalgebraUq
(
ĝl(2|2))

2.1. The Hopf algebraUq
(
gl(2|2))

The quantum deformationUq
(
gl(2|2)) of the universal enveloping superalgebraU

(
gl(2|2))
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is defined as the associativeZ2-graded algebra over the ring of formal power seriesC[[q−1]]
generated by{ei, fi, hj } with i = 1, 2, 3 andj = 1, 2, 3, 4 subject to the relations

[hj , hj ′ ] = 0

qhj eiq
−hj = qaij ei

qhj fiq
−hj = q−aij fi

[ei, fi ′ ] = δi,i ′ q
hi − q−hi
q − q−1

(1)

and

[e1, e3] = [f1, f3] = 0[
[e2, e1]q, [e2, e3]q

] = [[f2, f1]q−1, [f2, f3]q−1

] = 0
(2)

where [, ] denotes the Lie superbracket [x, y] ≡ xy − (−1)|x|·|y|yx. All simple roots being
chosen odd, theZ2-grading| · | : Uq

(
gl(2|2))→ Z2 assigns the value 1 to each generator

ei, fi and the value 0 to 1, hj . The deformed supercommutators in (2) are defined by

[ei, ei ′ ]q ≡ eiei ′ + qaii′ ei ′ei [fi, fi ′ ]q−1 ≡ fifi ′ + q−aii′fi ′fi. (3)

In (1) ajj ′ = (αj , αj ′) denotes the symmetric bilinear form on the system of positive simple
rootsαj :

a =


0 1 0 1

1 0 −1 0

0 −1 0 1

1 0 1 0

 . (4)

In terms of the basis{τ1, τ2, τ3, τ4} with the bilinear form(τj , τj ′) = −(−1)j δj,j ′ the simple
roots αj and weights3j readαj = −(−1)j (τj + τj+1), j = 1, 2, 3, α4 = τ1 − τ4 and
3j =

∑j

j ′=1 τj ′ − 1
2

∑4
j ′=1 τj ′ . OverC[[q − 1]] one can define the element

h = logq = −
∞∑
n=1

(−1)n

n
(q − 1)n. (5)

In what follows the notationqx⊗y = exp
(
h x ⊗ y) =∑∞n=0

hn

n! (x ⊗ y)n will also be used.
Uq
(
gl(2|2)) can be endowed with a graded Hopf algebra structure introducing the

coproduct

1(ei) = qhi ⊗ ei + ei ⊗ 1 1(fi) = fi ⊗ q−hi + 1⊗ fi 1(qhj ) = qhj ⊗ qhj (6)

the antipode

S(ei) = −q−hi ei S(fi) = −fiqhi S(qhj ) = q−hj (7)

and the counit

ε(ei) = ε(fi) = ε(hj ) = 0 ε(1) = 1. (8)

The coproduct satisfies1(xy) = 1(x)1(y) with the product operation of the graded Hopf
algebra being defined by(v⊗w)(x⊗y) = (−1)|w|·|x|vx⊗wy. The antipodeS is aZ2-graded
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algebra antiautomorphismS(xy) = (−1)|x|·|y|S(y)S(x). Uq
(
gl(2|2)) is a quasitriangular

graded Hopf algebra with the universal R-matrixR ∈ Uq
(
gl(2|2))⊗̂Uq(gl(2|2)) given by

R = r q− 1
2

∑4
j,j ′=1 ajj ′ (hj⊗hj ′ )− 1

4λ0(h1+h3)⊗(h1+h3)

r = r1 r1,2 r1,2,3 r2 r2,3 r3
ri = exp

(
(q − q−1) ei ⊗ fi

)
r1,2 = expq2

(
(q − q−1) [e2, e1]q ⊗ [f1, f2]q−1

)
r2,3 = expq−2

(−(q − q−1) [e3, e2]q ⊗ [f2, f3]q−1

)
r1,2,3 = exp

(−(q − q−1)
(
e3[e2, e1]q − q−1[e2, e1]qe3

)⊗ ([f1, f2]q−1f3− qf3[f1, f2]q−1

))
(9)

where the q-exponent is defined by

expp x ≡
∑∞

n=0 x
n

(n)p!

with

(n)p! = (1)p(2)p · · · (n)p (l)p = 1− pl
1− p p = q±2

and ⊗̂ denotes a tensor product completed overC[[q − 1]]. Because of the non-simple
structure ofUq

(
gl(2|2)), the parameterλ0 is not determined.

Use of the algebraic properties of q-exponentials following [24] allows us to verify the
quasitriangular structure ofUq

(
gl(2|2)):

1′(x)R = R1(x) ∀ x ∈ Uq
(
gl(2|2))(

1⊗ id
)
R = R13R23(

id⊗1)R = R13R12

(10)

with 1′ = σ ◦ 1, σ(x ⊗ y) = (−1)|x|·|y|y ⊗ x andR12 = R ⊗ 1, R23 = 1⊗ R, R13 =
(σ ⊗ id)R23. Due to (10)R obeys the universal Yang–Baxter equation

R12R13R23 = R23R13R12. (11)

A pair of representationsπW1, πW2 of Uq
(
gl(2|2)) on the modulesW1, W2 yields a

representation ofR on W1 ⊗ W2. Given any threeUq
(
gl(2|2)) modulesW1, W2, W3,

a solution of the Yang–Baxter equation

R
W1W2
12 R

W1W3
13 R

W2W3
23 = RW2W3

23 R
W1W3
13 R

W1W2
12 (12)

is provided byRWiWj = (πWi
⊗πWj )R ∈ End(Wi⊗Wj). RWiWj depends onλ0 only through

a constantCij (λ0). Excluding the generatorh4 from Uq
(
gl(2|2)) yields the closed algebra

Uq
(
sl(2|2)) which is not equipped with a universal R-matrix. The necessity of extending

Uq
(
sl(n|n)) to Uq

(
gl(n|n)) in order to construct particular solutions of the corresponding

Yang–Baxter equation has already been stressed in [13]. An elementwk of a given weight
representationπW on the moduleW is characterized by its weight3 =∑4

j=1m
(k)
j 3j where

π(hj )wk = m
(k)
j wk. Because of the non-simple structure ofgl(2|2), the componentm(k)4

can be varied continuously by an amount independent ofk throughout the module without
affecting the action of the generatorsei, fi andhi, i = 1, 2, 3. Then the R-matrixRWW ′
changes only by a constantC-valued factor as inspection of (9) confirms.
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2.2. The quantum affine superalgebraUq
(
ĝl(2|2))

Introducing an affine rootδ with (δ, δ) = (δ, τi) = 0 the quantum affine superalgebra
U ′q
(
ŝl(2|2)) can be defined based on the set of simple rootsα0 = δ − α1 − α2 − α3, αi =

αi, i = 1, 2, 3. The set of Chevalley generators{ei, fi, hi}, i = 1, 2, 3 is enlarged by
e0, f0, h0 with the Z2-grading |e0| = |f0| = 1, |h0| = 0. U ′q

(
ŝl(2|2)) is then defined

through the relations

[hi, hk] = 0 qhi ekq
−hi = qâik ek qhi fkq

−hi = q−âik fk

[ei, ek] = δi,k q
hi − q−hi
q − q−1

(13)

and

[e1, e3] = [e0, e2] = [f1, f3] = [f0, f2] = 0 (14)[
[e0, e1]q, [e0, e3]q

] = 0
[
[f0, f1]q−1, [f0, f3]q−1

] = 0[
[e1, e2]q, [e1, e0]q

] = 0
[
[f1, f2]q−1, [f1, f0]q−1

] = 0[
[e2, e1]q, [e2, e3]q

] = 0
[
[f2, f1]q−1, [f2, f3]q−1

] = 0[
[e3, e2]q, [e3, e0]q

] = 0
[
[f3, f2]q−1, [f3, f0]q−1

] = 0.

(15)

Here the deformed supercommutators are defined as in (3) after replacinga by

â =


0 −1 0 1

−1 0 1 0

0 1 0 −1

1 0 −1 0

 . (16)

A coproduct and an antipode can be introduced using the expressions given in (6) and (7) for
i, j = 0, 1, 2, 3. As in the non-affine case,U ′q

(
ŝl(2|2)) has to be extended toU ′q

(
ĝl(2|2))

to obtain a quasitriangular structure. This is achieved by formulating the algebra in terms
of the Drinfeld basis [20]. Introduction of a grading operator yields the full quantum affine
superalgebraUq

(
ĝl(2|2)). It is defined as the unital associativeZ2-graded algebra over

C[[q − 1]] generated by the Drinfeld generators{Ei,±n ,H
j
n , c} with n ∈ Z, i = 1, 2, 3 and

j = 1, 2, 3, 4 and the grading operatord subject to the relations

[c, x] = 0 ∀ x ∈ Uq
(
ĝl(2|2))[

Hj
n ,H

j ′
n′
] = δn+n′,0qnajj ′ − q−najj ′

n(q − q−1)

γ n − γ−n
q − q−1

qH
j

0Ei,±n q−H
j

0 = q±aij Ei,±n[
Hj
n ,E

i,±
n′
] = ±qnaij − q−naij

n(q − q−1)
E
i,±
n+n′γ

∓ n
2

[
Ei,+n , E

i ′,−
n′
] = δi,i ′ 1

q − q−1

(
γ

1
2 (n−n′)9i,+

n+n′ − γ−
1
2 (n−n′)9i,−

n+n′
)

(17)
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with γ = qc and

9j,+(z) ≡
∑
n>0

9j,+
n z−n = qHj

0 exp

(
(q − q−1)

∑
n>0

Hj
n z
−n
)

9j,−(z) ≡
∑
n>0

9
j,−
−n z

n = q−Hj

0 exp

(
−(q − q−1)

∑
n>0

H
j
−nz

n

) (18)

and[
Ei,±n , E

i ′,±
n′
] = 0 for aii ′ = 0

E
i,±
n+1E

i ′,±
n′ + q±aii′Ei

′,±
n′ E

i,±
n+1− Ei

′,±
n′+1E

i,±
n − q±aii′Ei,±n E

i ′,±
n′+1 = 0 for aii ′ 6= 0[[

E2,±
n , E

1,±
n′
]
q±1,

[
E

2,±
k , E

3,±
k′
]
q±1

]
+
[[
E

2,±
k , E

1,±
n′
]
q±1,

[
E2,±
n , E

3,±
k′
]
q±1

]
= 0.

(19)

The grading operatord is defined by the commutators[
d,Ei,±n

] = nEi,±n [
d,Hj

n

] = nHj
n

[
d, γ

] = [d, d] = 0. (20)

TheZ2-grading| · | : Uq
(
ĝl(2|2))→ Z2 assigns 1 toEi,±n and 0 to all remaining generators.

In (17)-(19) the symmetric bilinear form(αj , αj ′) = ajj ′ with j, j ′ = 0, 1, 2, 3, 4 is given
by

a =


0 −1 0 1 −2

−1 0 1 0 1

0 1 0 −1 0

1 0 −1 0 1

−2 1 0 1 0

 . (21)

The deformed supercommutators are defined analogously to (3):

[Ei,±n , E
i ′,±
n′ ]q = Ei,±n E

i ′,±
n′ + q aii′Ei

′,±
n′ E

i,±
n q = q±1. (22)

The Chevalley generators ofUq
(
ŝl(2|2)) are related to the Drinfeld generators by the

formulae

ei = Ei,+0 fi = Ei,−0 hi = Hi
0 for i = 1, 2, 3

qh0 = γ q−h1−h2−h3

e0 =
[
E

3,−
0 ,

[
E

2,−
0 , E

1,−
1

]
q

]
q
q−h1−h2−h3

f0 = qh1+h2+h3

[[
E

1,+
−1 , E

2,+
0

]
q−1, E

3,+
0

]
q−1

(23)

where[
Ei,±m ,

[
Ek,±n , E

k′,±
n′

]
q ′

]
q
= −q aik+aik′

[[
Ek,±n , E

k′,±
n′

]
q ′ , E

i,±
m

]
q−1

= Ei,±m
[
Ek,±n , E

k′,±
n′

]
q ′ − q aik+aik′

[
Ek,±n , E

k′,±
n′

]
q ′E

i,±
m q ′, q = ±1. (24)

This isomorphism allows us to evaluate coproduct and antipode of the Drinfeld generators
{Ei,±n ,H i

n, i = 1, 2, 3} from their definitions in terms of Chevalley generators. The
coproducts ofc andd are1(c) = c⊗1+1⊗c and1(d) = d⊗1+1⊗d. In order to establish
the standard graded Hopf algebra structure ofUq

(
ĝl(2|2)) the coproduct and antipode ofH 4

n

still need to be introduced suitably. Their definitions are implied by the construction of the
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spectral dependent universal R-matrix for the quantum affine super algebra. The antipode
relates the Drinfeld generators ofUq

(
ŝl(2|2)) to a second set of generators by

Ĥ i
n = −γ nS(H i

n) S
(
Ĥ i
n

) = −γ−nH i
n

Êi,±n = −γ nq±hi S(Ei,±n ) S
(
Êi,±n

) = −γ−nq∓hiEi,±n .
(25)

The defining relations of the set{Êi,±n , Ĥ i
n, c, d} with m ∈ Z, n ∈ Z − {0} as well as its

relation to the Chevalley generators are obtained from (17)–(19) and (23) by the replacement
q → q−1. Each set is extended to a realization ofUq

(
ĝl(2|2)) introducing the generators

H 4
n andĤ 4

n , respectively. The antipodes of the latter are defined as

S(H 4
n ) = −γ−nĤ 4

n S
(
Ĥ 4
n

) = −γ−nH 4
n . (26)

A different (graded) Hopf algebra structure originally due to Drinfeld [25, 26] shows a very
simple coproduct in terms of the Drinfeld generators. Although not frequently used, this
coproduct allows one to derive quantum parafermions for quantum affine algebras [27].

3. The universal R-matrix

To set up the quasitriangular structure for the affine case, define automorphismsDz of
Uq
(
ĝl(2|2))⊗ C[z, z−1] as

Dz

(
Ei,±n

) = znEi,±n Dz

(
Hj
n

) = znHj
n Dz(d) = d (27)

and maps

1z(x) =
(
Dz ⊗ id

)
1(x) 1′z(x) =

(
Dz ⊗ id

)
1′(x) ∀ x ∈ Uq

(
ĝl(2|2)). (28)

By means ofDz, the spectral dependent universal R-matrixR(z) of Uq
(
ĝl(2|2)) can be

introduced [17] as

R(z) = (Dz ⊗ id
) (
R
)

(29)

with the following properties:

R(z)1z(x) = 1′z(x)R(z) (30)(
1z ⊗ id

) (
R(w)

) = R13(zw)R23(w)(
id⊗1w

) (
R(zw)

) = R13(z)R12(zw)
(31)

whereR12(z) = R(z) ⊗ 1, R23(z) = 1⊗R(z), R13(z) =
(
σ ⊗ id

) (
R23(z)

)
. Equations

(30) and (31) imply the Yang–Baxter equation with a spectral parameter forR(z):
R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(z). (32)

Generally,R has the formR = ∑
i ei ⊗ ei where {ei} ({ei}) is a suitable basis of

Uq(b̂+)
(
Uq(b̂−)

)
. b̂+ and b̂− are the Borel subalgebras of̂gl(2|2) andUq(b̂±) denote the

corresponding graded Hopf subalgebras generated by{Ei,+0 , Ei,+n , Ei,−n , H
j

0 , H
j
n , n >

0, c, d} and {Ei,−0 , E
i,−
−n , E

i,+
−n , H

j

0 , H
j
−n, n > 0, c, d} over C[[q − 1]], respectively.

Properties (31) are established by means of the quantum double construction [28]. A
procedure to obtain explicit formulae for the universal R-matrix of affine quantum algebras
in terms of the Cartan–Weyl basis built from the Chevalley generators can be found in [29].
Since a triangular structure of this form does not exist forUq

(
ŝl(2|2)) generated by this

basis, the Drinfeld generators are used for the construction of the universal R-matrix along
similar lines.
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Let the normal ordering in the positive root space1+ of Uq
(
ŝl(2|2)) be fixed by

α1, . . . , α1+ k1δ, . . . , α1+ α2, . . . , α1+ α2+ k2δ, . . . , α1+ α2+ α3,

. . . , α1+ α2+ α3+ k3δ, . . . , α2, . . . , α2+ k4δ, . . . , α2+ α3,

. . . , α2+ α3+ k5δ, . . . , α3, . . . , α3+ k6,

. . . , δ,2δ, 3δ, . . . , α0+ α1+ α2+ l1δ,

. . . , α0+ α1+ α2, . . . , α0+ α1+ α3+ l2δ,

. . . , α0+ α1+ α3, . . . , α0+ α1+ l3δ, . . . , α0+ α1,

. . . , α0+ α2+ α3+ l4δ, . . . , α0+ α2+ α3,

. . . , α0+ α3+ l5δ, . . . , α0+ α3, . . . , α0+ l6δ, . . . , α0.

A solution of (30) forx ∈ Uq
(
ŝl(2|2)) in terms of the Drinfeld generators is given by (29)

with

R = R̆ q− 1
2

∑4
i,j=1 aij (hi⊗hj )− 1

4λ0(h1+h3)⊗(h1+h3)−c⊗d−d⊗c (33)

with

R̆ = R< R(δ) R>

R< = Rα1Rα1+α2Rα1+α2+α3Rα2Rα2+α3Rα3

Rαi =
→∏
n=0

exp
(
(q − q−1)γ−nEi,+n ⊗ Ei,−−n γ n

)

Rα1+α2 =
→∏
n=0

expq2

(
(q − q−1)γ−n

[
E

2,+
0 , E1,+

n

]
q
⊗ [E1,−

−n , E
2,−
0

]
q−1γ

n
)

Rα2+α3 =
→∏
n=0

expq−2

(
−(q − q−1)γ−n

[
E

3,+
0 , E2,+

n

]
q
⊗ [E2,−

−n , E
3,−
0

]
q−1γ

n
)

Rα1+α2+α3 =
→∏
n=0

exp

(
−(q − q−1)γ−n

[
E

3,+
0 ,

[
E

2,+
0 , E1,+

n

]
q

]
q

⊗
[[
E

1,−
−n , E

2,−
0

]
q−1, E

3,−
0

]
q−1
γ n
)

(34)

R(δ) = exp

(
−1

2
(q − q−1)

∞∑
n=1

n

[n]

4∑
i,j=1

aij γ
− 1

2nH i
n ⊗Hj

−nγ
1
2n

)
(35)

R> = Rα0+α1+α2Rα0+α1+α3Rα0+α1Rα0+α2+α3Rα0+α3Rα0

Rα0+αi+αj =
←∏
n=1

exp
(
−(q − q−1)q−hkEk,−n ⊗ Ek,+−n qhk

)
k 6= 0, i, j

Rα0+α3 =
←∏
n=1

expq2

(
(q − q−1)q−h1−h2

[
E1,−
n , E

2,−
0

]
q−1 ⊗

[
E

2,+
0 , E

1,+
−n
]
q
qh1+h2

)
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Rα0+α1 =
←∏
n=1

expq−2

(
−(q − q−1)q−h2−h3

[
E2,−
n , E

3,−
0

]
q−1 ⊗

[
E

3,+
0 , E

2,+
−n
]
q
qh2+h3

)

Rα0 =
←∏
n=1

exp

(
(q − q−1)q−h1−h2−h3

[[
E1,−
n , E

2,−
0

]
q−1, E

3,−
0

]
q−1

⊗
[
E

3,+
0 ,

[
E

2,+
0 , E

1,+
−n
]
q

]
q
qh1+h2+h3

)
. (36)

In (34) and (36) the direction of increasingn is indicated by the arrow. For any set of
parameters{λn, n > 0}, the expression

R̆ · exp

(
1

4
(q − q−1)

∞∑
n=1

n

[n]
λnγ

− 1
2n(H 1

n +H 3
n )⊗ (H 1

−n +H 3
−n)γ

1
2n

)
yields another solution of (30) forx ∈ Uq

(
ŝl(2|2)). An expression for1

(
94,±(z)

)
independent of the choice of{λn} will be provided in section 4. Imposing the intertwining
condition (30) for anyx ∈ Uq

(
ĝl(2|2)) yields λn = 0 for n > 0. SinceS2 = id due to the

particular choice of simple roots and (26), its inverse satisfies [30]

R−1(z) = (S ⊗ id
) (
R(z)

) = (id⊗ S) (R(z)). (37)

The dependence of the universal R-matrix ofUq
(
ĝl(2|2)) on d is contained entirely in the

second term of the right-hand side of (33). Thus, following [17] the universal R-matrix for
U ′q
(
ĝl(2|2)) is defined by

R(z) = R(z) q(c⊗d+d⊗c). (38)

Writing Rij (z) =
∑∞

n=0Rij,nz
n one may introduce the notation

R12(zq
±c3) =

∞∑
n=0

R12,n z
n
(
id⊗ id⊗ q±nc)

R13(zq
±c2) =

∞∑
n=0

R13,n z
n
(
id⊗ q±nc ⊗ id

)
R23(zq

±c1) =
∞∑
n=0

R23,n z
n
(
q±nc ⊗ id⊗ id

)
.

(39)

Then forR−(z) = R(z), R+(z) = σ (R−1(z)
)

the Yang–Baxter equation reads

R±12(z)R
±
13(zwq

∓c2)R±23(w) = R±23(w)R
±
13(zwq

±c2)R±12(z)

R−12(zq
−c3)R−13(zw)R

+
23(w) = R+23(w)R

−
13(zw)R

−
12(zq

c3).
(40)

From (31) and (37) one obtains the comultiplication and antipode formulae(
1⊗ id

)
R−(z) = R−13(z)R

−
23

(
zqc1

) (
S ⊗ id) R−(z) = (R−(zq−c1)

)−1(
id⊗1)R−(z) = R−13(z)R

−
12

(
zq−c3

) (
id⊗ S)R−(z) = (R−(zqc2)

)−1(
1⊗ id

)
R+(z) = R+13

(
zq−c2

)
R+23(z)

(
S ⊗ id

)
R+(z) = (R+(zqc1)

)−1(
id⊗1)R+(z) = R+13

(
zqc2

)
R+12(z)

(
id⊗ S)R+(z) = (R+(zq−c2)

)−1
.

(41)
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4. Vector representation and RSTS generators

For any zero-level representationπW : U ′q
(
ĝl(2|2))→ End(W) the associatedL-operators

are introduced according to [33, 17, 34]:

L±,W (z) = (πW ⊗ id
)
R±(z). (42)

Taking the image of (40) inWz ⊗W ′w one obtains theRLL relations

R
±,WW ′
12

(
z

w

)
L
±,W
1 (z)L

±,W ′
2 (w) = L±,W ′2 (w)L

±,W
1 (z)R

±,WW ′
12

(
z

w

)
R
−,WW ′
12

(
q−c

z

w

)
L
−,W
1 (z)L

+,W ′
2 (w) = L+,W ′2 (w)L

−,W
1 (z)R

−,WW ′
12

(
qc
z

w

) (43)

where

R±,WW
′
(z) = (πW ⊗ πW ′)R±(z). (44)

Choosing a basis{wi} in W , one can regardL±,W (z) as matrices with matrix elements
L
±,W
ij (z) ∈ Uq

(
ĝl(2|2)). Equation (41) yields the comultiplication formulae for theL-

operators:

1L
−,W
ij (z) =

4∑
l=1

(−1)(|i|+|l|)·(|j |+|l|)L−,Wlj

(
zq−c2

)⊗ L−,Wil (z)

1L
+,W
ij (z) =

4∑
l=1

(−1)(|i|+|l|)·(|j |+|l|)L+,Wlj (z)⊗ L+,Wil

(
zqc1

)
.

(45)

A finite-dimensional module ofUq
(
sl(2|2)) is provided byW(4) = Cw1⊕Cw2⊕Cw3⊕Cw4

with the action

hiwk =
(
δk,i + δk,i+1

)
(−1)i wk i = 1, 2, 3

eiwk = δk,i (−1)i wi+1

fiwk = δk,i+1wi

(46)

and the Z2-grading |w1| = |w3| = 0, |w2| = |w4| = 1. Making use of the
evaluation homomorphismρ [31, 32] allows us to equipW(4) with a representation
πW(4) : U ′q

(
ŝl(2|2))→ End(W(4)) completing (46) [22] by

h0wk = −(h1+ h2+ h3)wk

e0wk = −qδk,4w1

f0wk = −q−1δk,1w4.

(47)

In terms of the Drinfeld generators the action ofU ′q
(
ŝl(2|2)) is obtained from (46) and (47)

by means of (23):

Ei,+n wk = δk,i (−1)i q(1+(−1)i ) 1
2nwi+1 i = 1, 2, 3

Ei,−n wk = δk,i+1q
(1+(−1)i ) 1

2nwi

H i
nwk =

(
δk,i + δk,i+1

)
(−1)i q(1−(−1)i ) 1

2n
[n]

n
wk.

(48)

Since the universal R-matrix (33)–(36) only containsH 4
n in the combinationsH 4

n ⊗
(H 1
−n + H 3

−n) and (H 1
n + H 3

n ) ⊗ H 4
−n and (H 1

±n + H 3
±n)wk = −q±

1
2nwk ∀ k, the R-matrix
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RW
(4)W (4)

(z) ≡ R−,W(4)W (4)
(z) is determined by (48) up to a function ofz constant throughout

W(4) ⊗W(4). Its non-vanishing entries read

R33
33(z) = R11

11(z)

R44
44(z) = R22

22(z) =
q2− z

1− q2z
R11

11(z)

R
ij

ij (z) =
(1− z)q
1− q2z

R11
11(z)

R
ji

ij (z) = (−1)|i|·|j |
1− q2

1− q2z
R11

11(z) for i < j

R
ji

ij (z) = (−1)|i|·|j |
(1− q2)z

1− q2z
R11

11(z) for i > j.

(49)

To evaluate theL-operators (42) corresponding toW(4), it is convenient to write the action
of the generatorsH 4

n as

H 4
0wk = −

(
δk,1− δk,4− κ0

)
wk

H 4
nwk = −

(
δk,1− δk,4− κn

) [n]

n
wk n 6= 0.

(50)

L±,W
(4)

depends on parameters{κ0, κn} and{λ0, λn} only through the common factor

f ±(z) = exp

(
±1

2
(q − q−1)

∞∑
n=1

(κ∓n − λ∓n)
(
H 1
±n +H 3

±n
)
γ∓

n
2 zn
)
q±

1
2 (κ0−λ0)(h1+h3). (51)

The dependence of the remaining part on the Drinfeld generators is conveniently formulated
by means of a triangular decomposition:

L±,W
(4) = f ± ·


1 · · · 0

A±21 1
...

A±31 A±32 1

A±41 A±42 A±43 1





k±1 · · · 0

k±2
...

... k±3

0 · · · k±4




1 B±12 B±13 B±14

1 B±23 B±24

... 1 B±34

0 · · · 1


(52)

where the argumentz is omitted for simplicity. The Drinfeld generators are related to the
entries of (52) by

9i,±(z∓1) =
(
k±i
(
zq±

1
2 (1+(−1)i )γ±

1
2
))−1

k±i+1

(
zq±

1
2 (1+(−1)i )γ±

1
2
)

for i = 1, 2, 3

94,±(z∓1) =
(
k±1
(
zq±1γ±

1
2
)
k±4
(
zq±1γ±

1
2
))−1

(53)

and

(q − q−1)

∞∑
n= 1

2 (1∓1)

E
i,+
±n z

n = ±(−1)iB±i i+1

(
zq±

1
2 (1+(−1)i )γ

1
2 (1±1)

)
(q − q−1)

∞∑
n= 1

2 (1±1)

E
i,−
±n z

n = ±A±i+1 i

(
zq±

1
2 (1+(−1)i )γ−

1
2 (1∓1)

)
for i = 1, 2, 3.

(54)
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The choiceκn− λn = 0 ∀ n corresponds to the generalization of the Reshetikhin–Semenov-
Tian-Shansky basis for the quantum affine algebraUq

(
ŝl(N)

)
[25] to Uq

(
ĝl(N |N)) in the

caseN = 2. With κ0 − λ0 = 1, κn − λn = qn, κ−n − λ−n = 1 for n > 0 the coproduct
1(H 4

±n) can be expressed via the coproduct of

L±11(z̃
±) = q∓ 1

2 (h2+h4) exp

(
∓1

2
(q − q−1)

∞∑
n=1

(
H 2
±n +H 4

±n
)
zn
)

with z̃± = zq±1γ±
1
2

(55)

which is obtained from (45) as

1
(
L±11(z̃

±)
) = (1⊗ L±11(z̃

±q
1
2 (1±2)c1)

)

·
(

1⊗ 1−
4∑
i=2

(−1)iA±i1(z̃
±q−

1
2 (1∓2)c2)⊗ B±1i (z̃±q

1
2 (1±2)c1)

)

·
(
L±11(z̃

±q−
1
2 (1∓2)c2)⊗ 1

)
(56)

where

A±31(z) = ±(q − q−1)

∞∑
n= 1

2 (1±1)

[
E

1,−
±n , E

2,−
0

]
q−1γ

1
2n(1∓1)zn

A±41(z) = ±(q − q−1)

∞∑
n= 1

2 (1±1)

[[
E

1,−
±n , E

2,−
0

]
q−1, E

3,−
0

]
q−1
γ

1
2n(1∓1)zn

B±13(z) = ∓(q − q−1)

∞∑
n= 1

2 (1∓1)

[
E

2,+
0 , E

1,+
±n
]
q
γ−

1
2n(1±1)zn

B±14(z) = ±(q − q−1)

∞∑
n= 1

2 (1∓1)

[
E

3,+
0 ,

[
E

2,+
0 , E

1,+
±n
]
q

]
q
γ−

1
2n(1±1)zn.

(57)

Similar formulae can be derived considering the operatorsK±(z) = (id⊗πW(4)

)
R∓(z) with

the coproducts1
(
K+ij (z)

) =∑4
l=1K

+
il (z)⊗K+lj (zqc1) and1

(
K−ij (z)

) =∑4
l=1K

−
il (zq

−c2)⊗
K−lj (z) according to (41). Then1(H 2

±n −H 4
±n) follows from the coproduct of

K±44(z̃
±) = q∓ 1

2 (h2−h4) exp

(
∓1

2
(q − q−1)

∞∑
n=1

(
H 2
±n −H 4

±n
)
zn
)

(58)

which is given by

1
(
K±44

(
z̃±
)) = (K±44

(
z̃±q−

1
2 (1∓2)c2

)⊗ 1
)

·
(

1⊗ 1+
3∑
i=1

(−1)iA±4i
(
z̃±q−

1
2 (1∓2)c2

)⊗ B±i4(z̃±q 1
2 (1±2)c1

))

·
(

1⊗K±44

(
z̃±q

1
2 (1±2)c1

))
(59)
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with

B±24(z) = ∓(q − q−1)

∞∑
n= 1

2 (1∓1)

[
E

3,+
0 , E

2,+
±n
]
q
q∓nγ−

1
2n(1±1)zn

A±42(z) = ∓(q − q−1)

∞∑
n= 1

2 (1±1)

[
E

2,−
±n , E

3,−
0

]
q−1q

∓nγ
1
2n(1∓1)zn.

(60)

Combining equations (56) and (59) provides a definition of the coproduct of94,±(z)
consistent with the quasitriangular structure. It can easily be seen that a different choice of
{κn − λn} gives rise to the same formulae for the coproduct of the right hand sides of (55)
and (58) by observing that the coproduct of(H 1

±n +H 3
±n) is given by

1(H 1
±n +H 3

±n) = (H 1
±n +H 3

±n)⊗ γ−
1
2n(1∓2) + γ 1

2n(1±2) ⊗ (H 1
±n +H 3

±n) (61)

independent of{κn, λn}. Thus equation (56) (or equation (59)) can be used to set up the
intertwining condition (30) for allx ∈ Uq

(
ĝl(2|2)). This requirement fixesR as given in

(33)–(36) up to the parameterλ0.
Finally, the antipode of94,±(z) is obtained making use of (37) to evaluate the antipodes

of L±11(z) andK±44(z):

S
(
L±11(z)

) = (L±11(zγ
∓1)
)−1+ (91,±(z∓1γ∓1)93,±(z∓1γ∓1)

)− 1
2

·
4∑
i=2

B±1i (zγ
∓1)

(
k±i (zγ

∓1)
)−1
A±i1(zγ

∓1)

S
(
K±44(z)

) = (K±44(zγ
∓1)
)−1+ (91,±(z∓1γ∓1)93,±(z∓1γ∓1)

)− 1
2

·
3∑
i=1

A±4i (zγ
∓1) k±i (zγ

∓1) B±i4(zγ
∓1).

(62)

5. An infinite-dimensional Uq
(
gl(2|2)) module

Motivated by physical applications to two-dimensional disordered systems [7] the remainder
of this paper focuses on evaluation modules associated with a pair of infinite-dimensional
Uq
(
gl(2|2)) representations. The modulesV and V̂ are generated by the action of

Uq
(
gl(2|2)) on the elementsv0,0 and v̂0,0 characterized by

h1v0,0 = h3v0,0 = 0 h2v0,0 = h4v0,0 = −v0,0 eiv0,0 = 0

h1v̂0,0 = h3v̂0,0 = 0 h2v̂0,0 = h4v̂0,0 = v̂0,0 fiv̂0,0 = 0
(63)

for i = 1, 2, 3. The basis vectors ofV and V̂ are conveniently denoted byvk,p and v̂k,p
respectively [22], wherek = 0, 1, 2, 3 andp = 0, 1, 2, . . . and theZ2-grading is defined by
|v0,p| = |v̂0,p| = |v3,p| = |v̂3,p| = 0, |v1,p| = |v̂1,p| = |v2,p| = |v̂2,p| = 1. By means of the
evaluation homomorphismρ they can be lifted to modules ofU ′q

(
ŝl(2|2)). V is equipped
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with the following representationπV : U ′q
(
ŝl(2|2))→ End(V ):

ρ
(
E1,+
m

)
v0,p = −q−2m(p−1)[p]v2,p−1 ρ

(
E1,−
m

)
v0,p = ρ

(
E1,−
m

)
v1,p = 0

ρ
(
E1,+
m

)
v1,p = q−2mpv3,p ρ

(
E1,−
m

)
v2,p = q−2mpv0,p+1

ρ
(
E1,+
m

)
v2,p = ρ

(
E1,+
m

)
v3,p = 0 ρ

(
E1,−
m

)
v3,p = −q−2mp[p + 1]v1,p

ρ
(
E2,+
m

)
v0,p = ρ

(
E2,+
m

)
v1,p = 0 ρ

(
E2,−
m

)
v0,p = −q−m(2p−1)[p + 1]v2,p

ρ
(
E2,+
m

)
v2,p = q−m(2p−1)v0,p ρ

(
E2,−
m

)
v1,p = q−m(2p+1)v3,p+1

ρ
(
E2,+
m

)
v3,p = −q−m(2p−1)[p]v1,p−1 ρ

(
E2,−
m

)
v2,p = ρ

(
E2,−
m

)
v3,p = 0

ρ
(
E3,+
m

)
v0,p = ρ

(
E3,+
m

)
v2,p = 0 ρ

(
E3,−
m

)
v0,p = −q2m[p]v1,p−1

ρ
(
E3,+
m

)
v1,p = −q2mv0,p+1 ρ

(
E3,−
m

)
v2,p = −q2mv3,p

ρ
(
E3,+
m

)
v3,p = −q2m[p + 1]v2,p ρ

(
E3,−
m

)
v1,p = ρ

(
E3,−
m

)
v3,p = 0

(64)

and

ρ
(
H 1
m

)
vk,p = −ρ

(
H 3
m

)
vk,p = − 1

m
qm(p−2+δk,0) [m(p + 1− δk,0)]vk,p

ρ
(
H 2
m

)
vk,p = − 1

m
qm(p−2+2δk,1+δk,3) [m(p + 1− δk,3)]vk,p.

(65)

SinceπV (c) = 0, the operator

RVV (z) = (πV ⊗ πV )
(
R(z)

)
(66)

satisfies the Yang–Baxter equation

RVV12 (z)R
VV
13 (zw)R

VV
23 (w) = RVV23 (w)R

VV
13 (zw)R

VV
12 (z).

As in section 4, varying the action ofH 4
n on the moduleV just results in a change of a

z-dependent factor common to all entries of the R-matrix. The action ofH 4
0 on the modules

introduced in the context of disordered systems [7] suggests the choice

H 4
n v0,0 = − [n]

n
v0,0 for n 6= 0. (67)

BesidesRVV (z), the models proposed in [7] involve the limitq → −1 of RV̂V (z) and
RV V̂ (z). The relations of the corresponding R-matrices of the affine quantum super algebra
among each other can be obtained by relatingV̂ to a module dual toV . The dual module
V ∗ is introduced as the dual linear space toV with a U ′q

(
ĝl(2|2)) structure given by

〈a(v∗)|v〉 = (−1)|a|·|v
∗|〈v∗|S(a)v〉 a ∈ U ′q

(
ĝl(2|2)). (68)

Let the dual basis be fixed by the canonical pairing〈v∗l,r , vk,p〉 = δk,lδp,r . Following [17]
one finds that

RV
∗V (z) =

((
RVV (z)

)−1
)T1

RVV
∗
(z) =

((
RVV (z)

)−1
)T2

RV
∗V ∗(z) = (RVV (z))T1T2

.

(69)
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HereT1 andT2 denote the graded transpositions over the first and second space, respectively.
They are defined in terms of the usual transpositions by

RT1 = Rt1 − 2
(
(C − id)⊗ id

)
Rt1

(
C ⊗ id

)
RT2 = Rt2 − 2

(
id⊗ (C − id)

)
Rt2

(
id⊗ C) (70)

where the mapC : V → V is given byCvk,p = |vk,p|vk,p. As aUq
(
gl(2|2)) module,V ∗

is related to the modulêV introduced in [22] by

v∗k,p = κk,pv̂k,p with κk,p = (−1)p+δk,1q−(p+1)(p+|vk,p |)[p + 1]|vk,p |. (71)

Let matrix elements be assigned toRVV (z) according to

RVV (z)
(
vk,p ⊗ vl,r

) = ∑
k′,l′,p′,r ′

R
k′,p′; l′,r ′
k,p; l,r (z) vk′,p′ ⊗ vl′,r ′ (72)

and analogously for the remaining entries. Then from (69) one obtains the relations

R
k̂′,p′; l′,r ′
k̂,p; l,r

(
q2z−1

) = κk′,p′

κk,p
(−1)(|k

′|−|k|)(|k|+1)
(
R−1

)k,p; l′,r ′
k′,p′; l,r (z

−1)

R
k′,p′; l̂′,r ′
k,p; l̂,r

(
q−2z−1

) = κl′,r ′

κl,r
(−1)|l|(|l

′|−|l|) (R−1
)k′,p′; l,r
k,p; l′,r ′(z

−1)

R
k̂′,p′; l̂′,r ′
k̂,p; l̂,r (z) = κk′,p′κl′,r ′

κk,pκl,r
(−1)|k||l|+|k

′||l′| Rk,p; l,rk′,p′; l′,r ′(z).

(73)

Explicit expressions for the above R-matrices, as well as a detailed description of the
associated disordered systems, will be given elsewhere. Vertex models built fromRVV (z)

only may be studied by means of the algebraic Bethe ansatz. Ferromagnetic superspin chains
involving the moduleV were considered in [11]. However, due to the non-integrability of
the moduleV , the analysis of models accommodating bothV andV ∗ requires much further
investigation.
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ŝl
)

Prog. Theor. Phys. Suppl. (Japan)118 1–34


